Schmitz / Al-Hashimi / Eles | System-Level Design Techniques for Energy-Efficient Embedded Systems | E-Book | sack.de
E-Book

E-Book, Englisch, 205 Seiten, eBook

Schmitz / Al-Hashimi / Eles System-Level Design Techniques for Energy-Efficient Embedded Systems


2004
ISBN: 978-0-306-48736-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 205 Seiten, eBook

ISBN: 978-0-306-48736-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone.
Schmitz / Al-Hashimi / Eles System-Level Design Techniques for Energy-Efficient Embedded Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


List of Figures. List of Tables. Preface. Acknowledgements. 1: Introduction. 1.1. Embedded System Design Flow. 1.2. System Specification. 1.3. Co-Synthesis. 1.4. Hardware and Software Synthesis. 1.5. Book Overview. 2: Background. 2.1. Energy Dissipation of Processing Elements. 2.2. Energy Minimisation Techniques. 2.3. Energy Dissipation of Communication Links. 2.4. Further Reading. 2.5. Concluding Remarks. 3: Power Variation-Driven Dynamic Voltage Scaling. 3.1. Motivation. 3.2. Algorithms for Dynamic Voltage Scaling. 3.3. Experimental Results: Energy-Gradient-Based Dynamic Voltage Scaling. 3.4. Concluding Remarks. 4: Optimisation of Mapping and Scheduling for Dynamic Voltage Scaling. 4.1. Schedule Optimisation. 4.2. Optimisation of Task and Communication Mapping. 4.3. Optimisation of Allocation. 4.4. Concluding Remarks. 5: Energy-Efficient Multi-Mode Embedded Systems. 5.1. Preliminaries. 5.2. Motivational Examples. 5.3. Previous Work. 5.4. Problem Formulation. 5.5. Co-Synthesis of Energy-Efficient Multi-Mode Systems. 5.6. Experimental Results: Multi-Mode. 5.7. Concluding Remarks. 6: Dynamic Voltage Scaling for Control Flow-Intensive Applications; Dong Wu, B.M. Al-Hashimi, P. Eles. 6.1. The Conditional Task Graph Model. 6.2. Schedule Table for CTGs. 6.3. Dynamic Voltage Scaling for CTGs. 6.4. Voltage Scaling Technique for CTGs. 6.5. Conclusions. 7: LOPOCOS: A Low Power Co-Synthesis Tool. 7.1. Smart Phone Description. 7.2. LOPOCOS. 7.3. Concluding Remarks. 8: Conclusion. 8.1. Summary. 8.2. Future Directions. References. Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.