Parmee | Evolutionary and Adaptive Computing in Engineering Design | Buch | 978-1-85233-029-3 | sack.de

Buch, Englisch, 286 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1350 g

Parmee

Evolutionary and Adaptive Computing in Engineering Design


1. Auflage. 2001
ISBN: 978-1-85233-029-3
Verlag: Springer

Buch, Englisch, 286 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1350 g

ISBN: 978-1-85233-029-3
Verlag: Springer


Following an introduction to the various techniques and examples of their routine application, this potential is explored through the introduction of various strategies that support searches across a far broader set of possible design solutions within time and budget constraints. Generic problem areas investigated include:

- design decomposition;

- whole-system design;

- multi-objective and constraint satisfaction;

- human-computer interaction;

- computational expense.

Appropriate strategies that help overcome problems often encountered when integrating computer-based techniques with complex, real-world design environments are described. A straightforward approach coupled with examples supports a rapid understanding of the manner in which such strategies can best be designed to handle the complexities of a particular problem.

Parmee Evolutionary and Adaptive Computing in Engineering Design jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1.1 Setting the Scene.- 1.2 Why Evolutionary/Adaptive Computing?.- 1.3 The UK EPSRC Engineering Design Centres.- 1.4 Evolutionary and Adaptive Computing Integration.- 1.5 Generic Design Issues.- 1.6 Moving On.- 2. Established Evolutionary Search Algorithms.- 2.1 Introduction.- 2.2 A Brief History of Evolutionary Search Techniques.- 2.3 The Genetic Algorithm.- 2.4 GA Variants.- 2.5 Evolution Strategies.- 2.6 Evolutionary Programming.- 2.7 Genetic Programming.- 2.8 Discussion.- 3. Adaptive Search and Optimisation Algorithms.- 3.1 Introduction.- 3.2 The Ant-colony Metaphor.- 3.3 Population-based Incremental Learning.- 3.4 Simulated Annealing.- 3.5 Tabu Search.- 3.6 Scatter Search.- 3.7 Discussion.- 4. Initial Application.- 4.1 Introduction.- 4.2 Applying the GA to the Shape Optimisation of a Pneumatic, Low-head, Hydropower Device.- 4.3 The Design ofGas Turbine Blade Cooling Hole Geometries.- 4.5 Evolutionary Design of a Three-centred Concrete Arch Dam.- 4.6 Discussion.- 5. The Development of Evolutionary and Adaptive Search Strategies for Engineering Design.- 5.1 Introduction.- 5.2 Cluster-oriented Genetic Algorithms.- 5.3 The GAANT (GA-Ant) Algorithm.- 5.4 DRAM and HDRAM Genetic Programming Variants.- 5.5 Evolutionary and Adaptive Search Strategies for Constrained Problems.- 5.6 Evolutionary Multi-criterion Satisfaction.- 5.7 Designer Interaction within an Evolutionary Design Environment.- 5.8 Dynamic Shape Refinement and Injection Island Variants.- 5.9 Discussion.- 6. Evolutionary Design Space Decomposition.- 6. I Introduction.- 6.2 Multi-modal Optimisation.- 6.3 Cluster-oriented Genetic Algorithms.- 6.4 Application of vmCOGA.- 6.5 Alternative COGA Structures.- 6.6 Agent-assisted Boundary Identification.- 6.7 Discussion.- 7. Whole-system Design.- 7.1 Introduction.- 7.2 Previous Related Work.- 7.3 The Hydropower System.- 7.4 The Structured Genetic Algorithm.- 7.5 Simplifying the Parameter Representation.- 7.6 Results and Discussion.- 7.7 Thermal Power System Redesign.- 7.8 Discussion.- 8. Variable-length Hierarchies and System Identification.- 8.1 Introduction.- 8.2 Improving Rolls Royce Cooling Hole Geometry Models.- 8.3 Discussion of Initial Application.- 8.4 Further Development of the GP Paradigm.- 8.5 Symbolic Regression with HDRAM-GP.- 8.6 Dual-agent Integration.- 8.7 Return to Engineering Applications.- 8.8 Discussion.- 9. Evolutionary Constraint Satisfaction and Constrained Optimisation.- 9.1 Introduction.- 9.2 Dealing with Explicit Constraints.- 9.3 Implicit Constraints.- 9.4 Defining Feasible Space.- 9.5 Satisfying Constraint in the Optimisation of Thermal Power Plant Design.- 9.6 GA/Ant-colony Hybrid for the Flight Trajectory Problem.- 9.7 Other Techniques.- 9.8 Discussion.- 10. Multi-objective Satisfaction and Optimisation.- 10.1 Introduction.- 10.2 Established Multi-objective Optimisation Techniques.- 10.3 Interactive Approaches to Multi-objective Satisfaction/Optimisation.- 10.4 Qualitative Evaluation ofGA-generated Design Solutions.- 10.5 Cluster-oriented Genetic Algorithms for Multi-objective Satisfaction.- 10.6 Related Work and Further Reading.- 10.7 Discussion.- 11. Towards Interactive Evolutionary Design Systems.- 11.1 Introduction.- 11.2 System Requirements.- 11.3 The Design Environment and the IEDS.- 11.4 The Rule-based Preference Component.- 11.5 The Co-evolutionary Environment.- 11.6 Combining Preferences with the Co-evolutionary Approach.- 11.7 Cluster-oriented Genetic Algorithm s as Information Gathering Processes.- 11.8 Machine-based Agent Support.- 11.9 Machine-based Design Space Modification.- 11.10 Discussion.- 12. Population-based Search, Shape Optimisation and Computational Expense.- 12.1 Introduction.- 12.2 Parallel, Distributed and Co-evolutionary Strategies.- 12.3 Introducing the Problem and the Developed Strategies.- 12.4 The Evaluation Model.- 12.5 Initial Results.- 12.6 Dynamic Shape Refinement.- 12.7 The Injection Island GA.- 12.8 Dynamic Injection.- 12.9 Distributed Search Techniques.- 12.10 Discussion.- 13. Closing Discussion.- 13.1 Introduction.- 13.2 Difficulties Facing Successful Integration ofEC with Engineering Design.- 13.3 Overview of the Techniques and Strategies Introduced.- 13.4 Final Remarks.- Appendix A. Some Basic Concepts.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.