Parmee | Evolutionary and Adaptive Computing in Engineering Design | E-Book | sack.de
E-Book

E-Book, Englisch, 286 Seiten, eBook

Parmee Evolutionary and Adaptive Computing in Engineering Design


2001
ISBN: 978-1-4471-0273-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 286 Seiten, eBook

ISBN: 978-1-4471-0273-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Following an introduction to the various techniques and examples of their routine application, this potential is explored through the introduction of various strategies that support searches across a far broader set of possible design solutions within time and budget constraints. Generic problem areas investigated include:

- design decomposition;

- whole-system design;

- multi-objective and constraint satisfaction;

- human-computer interaction;

- computational expense.

Appropriate strategies that help overcome problems often encountered when integrating computer-based techniques with complex, real-world design environments are described. A straightforward approach coupled with examples supports a rapid understanding of the manner in which such strategies can best be designed to handle the complexities of a particular problem.

Parmee Evolutionary and Adaptive Computing in Engineering Design jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1.1 Setting the Scene.- 1.2 Why Evolutionary/Adaptive Computing?.- 1.3 The UK EPSRC Engineering Design Centres.- 1.4 Evolutionary and Adaptive Computing Integration.- 1.4.1 The Design Process.- 1.4.2 Routine, Innovative and Creative Design.- 1.4.3 Complementary Computational Intelligence Techniques.- 1.5 Generic Design Issues.- 1.6 Moving On.- 2. Established Evolutionary Search Algorithms.- 2.1 Introduction.- 2.2 A Brief History of Evolutionary Search Techniques.- 2.3 The Genetic Algorithm.- 2.3.1 The Simple Genetic Algorithm.- 2.3.2 Binary Mapping and the Schema Theorem.- 2.3.3 Real Number Representation.- 2.3.4 The Operators.- 2.3.5 Elitism and Exploitation versus Exploration.- 2.3.6 Self-adaptation.- 2.4 GA Variants.- 2.4.1 The CHC Genetic Algorithm.- 2.4.2 The EcoGA.- 2.4.3 The Structured Genetic Algorithm.- 2.4.4 The Breeder GA and the Messy GA.- 2.5 Evolution Strategies.- 2.6 Evolutionary Programming.- 2.7 Genetic Programming.- 2.8 Discussion.- 3. Adaptive Search and Optimisation Algorithms.- 3.1 Introduction.- 3.2 The Ant-colony Metaphor.- 3.3 Population-based Incremental Learning.- 3.4 Simulated Annealing.- 3.5 Tabu Search.- 3.6 Scatter Search.- 3.7 Discussion.- 4. Initial Application.- 4.1 Introduction.- 4.2 Applying the GA to the Shape Optimisation of a Pneumatic, Low-head, Hydropower Device.- 4.3 The Design ofGas Turbine Blade Cooling Hole Geometries.- 4.3.1 Introduction.- 4.3.2 Integrating the Cooling Hole Model with a Genetic Algorithm.- 4.3.3 Further Work.- 4.4 Evolutionary FIR Digital Filter Design.- 4.4.1 Introduction.- 4.4.2 Coding Using a Structured GA.- 4.4.3 Fitness Function.- 4.4.4 Results.- 4.5 Evolutionary Design of a Three-centred Concrete Arch Dam.- 4.6 Discussion.- 5. The Development of Evolutionary and Adaptive Search Strategies for Engineering Design.- 5.1 Introduction.- 5.2 Cluster-oriented Genetic Algorithms.- 5.3 The GAANT (GA-Ant) Algorithm.- 5.4 DRAM and HDRAM Genetic Programming Variants.- 5.5 Evolutionary and Adaptive Search Strategies for Constrained Problems.- 5.6 Evolutionary Multi-criterion Satisfaction.- 5.7 Designer Interaction within an Evolutionary Design Environment.- 5.8 Dynamic Shape Refinement and Injection Island Variants.- 5.9 Discussion.- 6. Evolutionary Design Space Decomposition.- 6. I Introduction.- 6.2 Multi-modal Optimisation.- 6.3 Cluster-oriented Genetic Algorithms.- 6.4 Application of vmCOGA.- 6.4.1 Two-dimensional Test Functions.- 6.4.2 Engineering Design Domains.- 6.4.3 Single-objective/Continuous Design Space.- 6.4.4 Multi-level , Mixed-parameter Design Space.- 6.5 Alternative COGA Structures.- 6.5.1 Introduction.- 6.5.2 The COGA Variants.- 6.5.3 Summary of Results.- 6.5.4 Search Space Sampling.- 6.5.5 The Dynamic Adaptive Filter.- 6.6 Agent-assisted Boundary Identification.- 6.7 Discussion.- 7. Whole-system Design.- 7.1 Introduction.- 7.1.1 Whole-system Design.- 7.1.2 Designer Requirement.- 7.1.3 Design Environments.- 7.2 Previous Related Work.- 7.3 The Hydropower System.- 7.3.1 The System.- 7.3.2 The Model.- 7.4 The Structured Genetic Algorithm.- 7.4.1 The Algorithm.- 7.4.2 Dual Mutation Strategies.- 7.4.3 stGA Results.- 7.5 Simplifying the Parameter Representation.- 7.6 Results and Discussion.- 7.7 Thermal Power System Redesign.- 7.7.1 Introduction.- 7.7.2 Problem Definition.- 7.7.3 A Hybrid GA-SLP Algorithm.- 7.7.4 The Design Application.- 7.8 Discussion.- 8. Variable-length Hierarchies and System Identification.- 8.1 Introduction.- 8.2 Improving Rolls Royce Cooling Hole Geometry Models.- 8.2.1 Introduction.- 8.2.2 Simple Curve and Surface Fitting.- 8.2.3 Evolving Formulae to Determine the Friction Factor in Turbulent Pipe Flow.- 8.2.4 Eddy Correlations for Laminar Two-dimensional Sudden Expansion Flows.- 8.3 Discussion of Initial Application.- 8.4 Further Development of the GP Paradigm.- 8.4.1 Development of Node Complexity Ratings.- 8.4.2 Constrained-complexity Crossover.- 8.4.3 Steady-state GP.- 8.4.4 Injection Mutation.- 8.5 Symbolic Regression with HDRAM-GP.- 8.6 Dual-agent Integration.- 8.7 Return to Engineering Applications.- 8.7.1 Introduction.- 8.7.2 Explicit Formula for Friction Factor In Turbulent Pipe Flow.- 8.7.3 Eddy Correlations for Laminar Two-dimensional Sudden Expansion Flows.- 8.7.4 Thermal Paint Jet Turbine Blade Data.- 8.8 Discussion.- 9. Evolutionary Constraint Satisfaction and Constrained Optimisation.- 9.1 Introduction.- 9.2 Dealing with Explicit Constraints.- 9.2.1 The Fault Coverage Test Code Generation Problem.- 9.2.2 The Inductive Genetic Algorithm.- 9.2.3 Application to the Problem.- 9.3 Implicit Constraints.- 9.4 Defining Feasible Space.- 9.4.1 Introduction.- 9.4.2 The Problem Domain.- 9.4.3 Fixing a Feasible Point.- 9.4.4 Creating a Feasible Subset.- 9.4.5 Establishing the Degree of Constraint Violation.- 9.4.6 Results and Discussion.- 9.5 Satisfying Constraint in the Optimisation of Thermal Power Plant Design.- 9.6 GA/Ant-colony Hybrid for the Flight Trajectory Problem.- 9.6.1 The Problem Domain.- 9.6.2 The Ant-colony Model for Continuous-space Search.- 9.6.3 A Hybrid Search Framework.- 9.7 Other Techniques.- 9.8 Discussion.- 10. Multi-objective Satisfaction and Optimisation.- 10.1 Introduction.- 10.2 Established Multi-objective Optimisation Techniques.- 10.2.1 Weighted-sum-based Optimisation.- 10.2.2 Lexicographic Order-based Optimisation.- 10.2.3 The Pareto Method.- 10.2.4 Pareto Examples.- 10.2.5 The Vector-evaluated Genetic Algorithm.- 10.2.6 Comparison of the Various Techniques.- 10.3 Interactive Approaches to Multi-objective Satisfaction/Optimisation.- 10.4 Qualitative Evaluation ofGA-generated Design Solutions.- 10.4.1 Introduction.- 10.4.2 The Design Model.- 10.4.3 Adaptive Restricted Tournament Selection.- 10.4.4 Assessing the Qualitative Fitness of High-performance Solutions.- 10.4.5 Knowledge Representation.- 10.4.6 Typical Results.- 10.4.7 Further Work.- 10.5 Cluster-oriented Genetic Algorithms for Multi-objective Satisfaction.- 10.6 Related Work and Further Reading.- 10.7 Discussion.- 11. Towards Interactive Evolutionary Design Systems.- 11.1 Introduction.- 11.2 System Requirements.- 11.3 The Design Environment and the IEDS.- 11.4 The Rule-based Preference Component.- 11.4.1 Introduction.- 11.4.2 Preferences.- 11.4.3 Example Application.- 11.5 The Co-evolutionary Environment.- 11.5.1 Introduction.- 11.5.2 Initial Methodology.- 11.5.3 The Range Constraint Map.- 11 .5.4 Sensitivity Analysis.- 11.5.5 Results.- 11.6 Combining Preferences with the Co-evolutionary Approach.- 11.7 Cluster-oriented Genetic Algorithm s as Information Gathering Processes.- 11.7.1 Introduction.- 11.7.2 Extraction and Processing of COGA-generated Data.- 11.8 Machine-based Agent Support.- 11.8.1 Introduction.- 11.8.2 Interface Agents.- 11.8.3 Communication Agents.- 11.8.4 Search Agents.- 11.8.5 Information Processing Agents.- 11.8.6 Negotiating Agents.- 11.9 Machine-based Design Space Modification.- 11.9.1 Introduction.- 11.9.2 The Developed EcoGA Framework.- 11.9.3 Determining Direction and Extent of Design Space Extension.- 11.10 Discussion.- 12. Population-based Search, Shape Optimisation and Computational Expense.- 12.1 Introduction.- 12.2 Parallel , Distributed and Co-evolutionary Strategies.- 12.3 Introducing the Problem and the Developed Strategies.- 12.4 The Evaluation Model.- 12.5 Initial Results.- 12.6 Dynamic Shape Refinement.- 12.6.1 Introduction.- 12.6.2 Stand-alone CHC and DSR CHC.- 12.7 The Injection Island GA.- 12.8 Dynamic Injection.- 12.9 Distributed Search Techniques.- 12.9.1 Introduction.- 12.9.2 Co-operative Search.- 12.10 Discussion.- 13. Closing Discussion.- 13.1 Introduction.- 13.2 Difficulties Facing Successful Integration ofEC with Engineering Design.- 13.3 Overview of the Techniques and Strategies Introduced.- 13.4 Final Remarks.- Appendix A. Some Basic Concepts.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.