Owhadi / Scovel | Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization | E-Book | sack.de
E-Book

Owhadi / Scovel Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization

From a Game Theoretic Approach to Numerical Approximation and Algorithm Design

E-Book, Englisch, Band 35

Reihe: Cambridge Monographs on Applied and Computational Mathematics

ISBN: 978-1-108-65564-4
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Although numerical approximation and statistical inference are traditionally covered as entirely separate subjects, they are intimately connected through the common purpose of making estimations with partial information. This book explores these connections from a game and decision theoretic perspective, showing how they constitute a pathway to developing simple and general methods for solving fundamental problems in both areas. It illustrates these interplays by addressing problems related to numerical homogenization, operator adapted wavelets, fast solvers, and Gaussian processes. This perspective reveals much of their essential anatomy and greatly facilitates advances in these areas, thereby appearing to establish a general principle for guiding the process of scientific discovery. This book is designed for graduate students, researchers, and engineers in mathematics, applied mathematics, and computer science, and particularly researchers interested in drawing on and developing this interface between approximation, inference, and learning.
Owhadi / Scovel Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization jetzt bestellen!

Weitere Infos & Material


1. Introduction; 2. Sobolev space basics; 3. Optimal recovery splines; 4. Numerical homogenization; 5. Operator adapted wavelets; 6. Fast solvers; 7. Gaussian fields; 8. Optimal recovery games on $\mathcal{H}^{s}_{0}(\Omega)$; 9. Gamblets; 10. Hierarchical games; 11. Banach space basics; 12. Optimal recovery splines; 13. Gamblets; 14. Bounded condition numbers; 15. Exponential decay; 16. Fast Gamblet Transform; 17. Gaussian measures, cylinder measures, and fields on $\mathcal{B}$; 18. Recovery games on $\mathcal{B}$; 19. Game theoretic interpretation of Gamblets; 20. Survey of statistical numerical approximation; 21. Positive definite matrices; 22. Non-symmetric operators; 23. Time dependent operators; 24. Dense kernel matrices; 25. Fundamental concepts.


Scovel, Clint
Clint Scovel is a Research Associate in the Computing and Mathematical Sciences department at the California Institute of Technology, after a twenty-six-year career at Los Alamos National Laboratory, including foundational research in symplectic algorithms and machine learning. He received his Ph.D. in mathematics from the Courant Institute of Mathematics at New York University in 1983. He currently works on uncertainty quantification, Bayesian methods, incorporating computational complexity in Wald's statistical decision theory, operator adapted wavelets and fast solvers.

Owhadi, Houman
Houman Owhadi is Professor of Applied and Computational Mathematics and Control and Dynamical Systems in the Computing and Mathematical Sciences department at the California Institute of Technology. He is one of the main editors of the Handbook of Uncertainty Quantification (2016). His research interests concern the exploration of interplays between numerical approximation, statistical inference and learning from a game theoretic perspective, especially the facilitation/automation possibilities emerging from these interplays.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.