E-Book, Englisch, Band 12439, 115 Seiten, eBook
Li / Egger Towards the Automatization of Cranial Implant Design in Cranioplasty
1. Auflage 2020
ISBN: 978-3-030-64327-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
First Challenge, AutoImplant 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
E-Book, Englisch, Band 12439, 115 Seiten, eBook
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-030-64327-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Patient Specific Implants (PSI): Cranioplasty in the Neurosurgical Clinical Routine.- Dataset Descriptor for the AutoImplant Cranial Implant Design Challenge.- Automated Virtual Reconstruction of Large Skull Defects using Statistical Shape Models and Generative Adversarial Networks.- Cranial Implant Design through Multiaxial Slice Inpainting using Deep Learning.- Cranial Implant Design via Virtual Craniectomy with Shape Priors.- Deep Learning Using Augmentation via Registration: 1st Place Solution to the AutoImplant 2020 Challenge.- Cranial Defect Reconstruction using Cascaded CNN with Alignment.- Shape Completion by U-Net: An Approach to the AutoImplant MICCAI Cranial Implant Design Challenge.- Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement.- Cranial Implant Design Using a Deep Learning Method with Anatomical Regularization.- High-resolution Cranial Implant Prediction via Patch-wise Training.- Learning Volumetric Shape Super-Resolution for Cranial Implant Design.