Egger / Li | Towards the Automatization of Cranial Implant Design in Cranioplasty | Buch | 978-3-030-64326-3 | sack.de

Buch, Englisch, 115 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 213 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

Egger / Li

Towards the Automatization of Cranial Implant Design in Cranioplasty

First Challenge, AutoImplant 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-64326-3
Verlag: Springer International Publishing

First Challenge, AutoImplant 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings

Buch, Englisch, 115 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 213 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

ISBN: 978-3-030-64326-3
Verlag: Springer International Publishing


This book constitutes the First Automatization of Cranial Implant Design in Cranioplasty Challenge, AutoImplant 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took place virtually due to the COVID-19 pandemic.

The 10 papers presented together with one invited paper and a dataset descriptor in this volume were carefully reviewed and selected form numerous submissions. This challenge aims to provide more affordable, faster, and more patient-friendly solutions to the design and manufacturing of medical implants, including cranial implants, which is needed in order to repair a defective skull from a brain tumor surgery or trauma. The presented solutions can serve as a good benchmark for future publications regarding 3D volumetric shape learning and cranial implant design.


Egger / Li Towards the Automatization of Cranial Implant Design in Cranioplasty jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Patient Specific Implants (PSI): Cranioplasty in the Neurosurgical Clinical Routine.- Dataset Descriptor for the AutoImplant Cranial Implant Design Challenge.- Automated Virtual Reconstruction of Large Skull Defects using Statistical Shape Models and Generative Adversarial Networks.- Cranial Implant Design through Multiaxial Slice Inpainting using Deep Learning.- Cranial Implant Design via Virtual Craniectomy with Shape Priors.- Deep Learning Using Augmentation via Registration: 1st Place Solution to the AutoImplant 2020 Challenge.- Cranial Defect Reconstruction using Cascaded CNN with Alignment.- Shape Completion by U-Net: An Approach to the AutoImplant MICCAI Cranial Implant Design Challenge.- Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement.- Cranial Implant Design Using a Deep Learning Method with Anatomical Regularization.- High-resolution Cranial Implant Prediction via Patch-wise Training.- Learning Volumetric Shape Super-Resolution for Cranial Implant Design.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.