Buch, Englisch, 379 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1210 g
Reihe: Universitext
An Introduction with Applications
Buch, Englisch, 379 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1210 g
Reihe: Universitext
ISBN: 978-3-540-04758-2
Verlag: Springer Berlin Heidelberg
An introduction to the basic theory of stochastic calculus and its applications. Examples are given throughout the text, in order to motivate and illustrate the theory and show its importance for many applications in e.g. economics, biology and physics. The basic idea of the presentation is to start from some basic results (without proofs) of the easier cases and develop the theory from there, and to concentrate on the proofs of the easier case in order to quickly progress to the parts of the theory that are most important for the applications. For the 6th edition the author has added further exercises and, for the first time, solutions to many of the exercises are provided.
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftstheorie, Wirtschaftsphilosophie
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
Weitere Infos & Material
Some Mathematical Preliminaries.- Itô Integrals.- The Itô Formula and the Martingale Representation Theorem.- Stochastic Differential Equations.- The Filtering Problem.- Diffusions: Basic Properties.- Other Topics in Diffusion Theory.- Applications to Boundary Value Problems.- Application to Optimal Stopping.- Application to Stochastic Control.- Application to Mathematical Finance.