Jankowski / Grabczewski / Duch | Meta-Learning in Computational Intelligence | Buch | 978-3-642-20979-6 | sack.de

Buch, Englisch, 359 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 791 g

Reihe: Studies in Computational Intelligence

Jankowski / Grabczewski / Duch

Meta-Learning in Computational Intelligence


2011
ISBN: 978-3-642-20979-6
Verlag: Springer

Buch, Englisch, 359 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 791 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-20979-6
Verlag: Springer


Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open.
Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which  these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process.

This is where algorithms that learn how to learnl come to rescue.
Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn.

This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.

Jankowski / Grabczewski / Duch Meta-Learning in Computational Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Universal meta-learning

architecture and algorithms.-

Meta-learning of instance

selection for data

summarization.-

Choosing the metric: a simple

model approach.-

Meta-learning Architectures:

Collecting, Organizing and

Exploiting Meta-knowledge.-

Computational intelligence for

meta-learning: a promising

avenue of research.-

Self-organization of supervised

models.-

Selecting Machine Learning

Algorithms Using the Ranking

Meta-Learning Approach.-

A Meta-Model Perspective and

Attribute Grammar Approach to

Facilitating the Development of

Novel Neural Network Models.-

Ontology-Based Meta-Mining

of Knowledge Discovery

Workflows.-

Optimal Support Features for

Meta-learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.