Jankowski / Duch / Grabczewski | Meta-Learning in Computational Intelligence | E-Book | sack.de
E-Book

E-Book, Englisch, Band 358, 359 Seiten, eBook

Reihe: Studies in Computational Intelligence

Jankowski / Duch / Grabczewski Meta-Learning in Computational Intelligence


Erscheinungsjahr 2011
ISBN: 978-3-642-20980-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 358, 359 Seiten, eBook

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-20980-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open.
Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which  these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process.

This is where algorithms that learn how to learnl come to rescue.
Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn.

This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.

Jankowski / Duch / Grabczewski Meta-Learning in Computational Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Universal meta-learningarchitecture and algorithms.- Meta-learning of instanceselection for datasummarization.- Choosing the metric: a simplemodel approach.- Meta-learning Architectures:Collecting, Organizing andExploiting Meta-knowledge.- Computational intelligence formeta-learning: a promisingavenue of research.- Self-organization of supervisedmodels.- Selecting Machine LearningAlgorithms Using the RankingMeta-Learning Approach.- A Meta-Model Perspective andAttribute Grammar Approach toFacilitating the Development ofNovel Neural Network Models.- Ontology-Based Meta-Miningof Knowledge DiscoveryWorkflows.- Optimal Support Features forMeta-learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.