E-Book, Englisch, 280 Seiten
Hong / Auciello / Wouters Emerging Non-Volatile Memories
1. Auflage 2014
ISBN: 978-1-4899-7537-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 280 Seiten
ISBN: 978-1-4899-7537-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory.This book also:Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others.Provides an overview of non-volatile memory fundamentals.Broadens readers' understanding of future trends in non-volatile memories.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
1.1;Memory Technology Evolution and Need for New Memory Concepts;6
1.2; Outline of This Book;7
1.2.1;Chapter 1: Ferroelectric Nonvolatile Memories (FeRAM);7
1.2.2; Chapter 2: Magnetic Nonvolatile Memories (MRAM);8
1.2.3; Chapter 3: Multiferroic Memories;8
1.2.4; Chapter 4: Phase-Change Memories (PCRAM);8
1.2.5; Chapter 5: Oxide Resistance Random Access Memories (OxRRAM);8
1.2.6; Chapter 6: Oxide-Based Memristive Nanodevices;9
1.2.7; Chapter 7: Ferroelectric Probe Storage Devices;9
2;Contents;10
3;Contributors;12
4;Part I: Ferroic Memories;14
4.1;Chapter 1: Review of the Science and Technology for Low- and High-Density Nonvolatile Ferroelectric Memories;15
4.1.1;1.1 Introduction;15
4.1.2;1.2 Ferroelectric Thin Film Synthesis and Characterization;18
4.1.2.1;1.2.1 Magnetron Sputter Synthesis and Characterization of Ferroelectric Thin Films and Heterostructures;18
4.1.2.2;1.2.2 Ion Beam Sputter Synthesis and Characterization of Ferroelectric Thin Films and Heterostructures;19
4.1.2.2.1;1.2.2.1 SIBMT-Based Studies to Understand Processing–Microstructure–Property Relationships of Ferroelectric PZT Thin Films and Heterostructures;19
4.1.2.2.2;1.2.2.2 SIBMT-Based Studies to Understand Processing– Microstructure–Property Relationships of Ferroelectric SBT Thin Films and Heterostructures;21
4.1.2.3;1.2.3 Pulsed Laser Ablation Synthesis and Characterization of Ferroelectric Films and Heterostructures;23
4.1.2.3.1;1.2.3.1 Processing–Microstructure–Property Relationships of PZT Films and Integration with Semiconductor Substrates;23
4.1.2.3.2;1.2.3.2 Processing–Microstructure–Property Relationships of SBT Films and Integration with Semiconductor Substrates;24
4.1.2.4;1.2.4 Chemical Vapor Deposition and Characterization of Ferroelectric Thin Films;27
4.1.2.4.1;1.2.4.1 Standard Precursor Delivery Techniques for MOCVD Synthesis of PZT Films;27
4.1.2.4.2;1.2.4.2 Alternative Precursor Delivery Techniques for MOCVD Synthesis of PZT Thin Films;28
4.1.2.4.3;1.2.4.3 MOCVD Synthesis and Characterization of SBT Thin Films;29
4.1.3;1.3 Materials Integration Strategies for Low-Density FeRAMs;31
4.1.3.1;1.3.1 Critical PZT-Based FeRAM Materials Integration Issues;31
4.1.3.2;1.3.2 Critical SBT-Based FeRAM Materials Integration Issues;31
4.1.4;1.4 FeRAM Fabrication Issues for Integration with the 0.35–45 nm CMOS Device Generations;32
4.1.4.1;1.4.1 Stacked Cell Processing Issues;33
4.1.4.2;1.4.2 Process Sequence Control;36
4.1.5;1.5 Critical Basic Physics Problems of FeRAMs: Current Understanding and Technological Implications;38
4.1.5.1;1.5.1 Microscale FeRAMs;39
4.1.5.2;1.5.2 Nanoscale FeRAMs;40
4.1.6;1.6 Basic Unsolved Physics Problems Related to FeRAMs;40
4.1.6.1;1.6.1 Basic Science Issues;40
4.1.6.1.1;1.6.1.1 What Are the Finite Size Effects in Ferroelectric Capacitor Properties? How Small Can a Ferroelectric Capacitor Be and Still Exhibit Ferroelectric Behavior?;41
4.1.6.1.2;1.6.1.2 Stresses and the Role of Substrate-Film Interactions;42
4.1.6.1.3;1.6.1.3 Polarization Dynamics;42
4.1.6.1.4;1.6.1.4 Role of Defects;43
4.1.7;1.7 Future Directions;43
4.1.8;1.8 Conclusions;45
4.1.9;References;45
4.2;Chapter 2: Hybrid CMOS/Magnetic Memories (MRAMs) and Logic Circuits;48
4.2.1;2.1 Introduction to Spintronics Phenomena Used in MRAM;48
4.2.1.1;2.1.1 GMR Discovery and Launching of Spin electronics;48
4.2.1.2;2.1.2 Tunnel Magnetoresistance;49
4.2.1.3;2.1.3 Spin-Transfer Phenomenon;51
4.2.2;2.2 Magnetic Random Access Memories;56
4.2.2.1;2.2.1 MRAM Based on Field-Induced Magnetization Switching;56
4.2.2.2;2.2.2 Thermally Assisted FIMS MRAM;66
4.2.2.2.1;2.2.2.1 General Principle of Thermally Assisted Approach;66
4.2.2.2.2;2.2.2.2 Reducing the Heating Power Density;68
4.2.2.2.3;2.2.2.3 Write Selectivity and Protection Against Stray Fields;71
4.2.2.2.4;2.2.2.4 TA-MRAM with Soft Reference Layer;71
4.2.2.3;2.2.3 First Generation of Spin-Transfer Torque MRAM;72
4.2.2.4;2.2.4 Advanced MRAM Concepts;78
4.2.2.4.1;2.2.4.1 Perpendicular STT MRAM;78
4.2.2.4.2;2.2.4.2 Thermally Assisted STT-MRAM;82
4.2.2.4.3;2.2.4.3 STT-MRAM with Perpendicular Polarizer;84
4.2.2.4.4;2.2.4.4 Multibit MRAM Concepts;86
4.2.2.4.5;2.2.4.5 3-Terminals STT MRAM Concepts;87
4.2.2.5;2.2.5 Perspectives on MRAM;89
4.2.3;2.3 Beyond MRAM, CMOS/Magnetic Integrated Electronics;90
4.2.3.1;2.3.1 From CMOS Electronics to Integrated CMOS/Magnetic Electronics;90
4.2.3.1.1;2.3.1.1 Power Consumption in CMOS Circuits;90
4.2.3.1.2;2.3.1.2 Reduction of the Dynamic Power Consumption;95
4.2.3.1.3;2.3.1.3 Reduction of Standby Power Consumption;96
4.2.3.2;2.3.2 Examples of CMOS/Magnetic Integrated Devices;97
4.2.3.3;2.3.3 Modelling Tools for the Design of Hybrid CMOS/MTJ Circuits;99
4.2.3.4;2.3.4 Perspectives;106
4.2.4;References;107
4.3;Chapter 3: Emerging Multiferroic Memories;113
4.3.1;3.1 Introduction;113
4.3.2;3.2 Multiferroic Materials;114
4.3.3;3.3 Principles of Magnetoelectricity in Multiferroics;120
4.3.4;3.4 Multiferroic Materials for Memory Applications;121
4.3.4.1;3.4.1 Manganite Thin Films;123
4.3.4.2;3.4.2 BiMnO3 Thin Films;126
4.3.4.3;3.4.3 BiFeO3 Thin Films;127
4.3.4.3.1;3.4.3.1 Controlling Domain Structures in BiFeO3;130
4.3.4.3.2;3.4.3.2 Evolution of Magnetism and Domain Wall Functionality in BiFeO3;133
4.3.4.3.3;3.4.3.3 Magnetoelectric Coupling in BiFeO3;139
4.3.4.3.4;3.4.3.4 Routes to Enhance Properties in BiFeO3;140
4.3.4.4;3.4.4 Other Single-Phase Multiferroics;148
4.3.4.5;3.4.5 Horizontal Multilayer Structures;149
4.3.4.6;3.4.6 Vertical Nanostructures;150
4.3.5;3.5 Design of Multiferroic-Based Memories;151
4.3.5.1;3.5.1 Electric Field Control of Ferromagnetism;154
4.3.5.2;3.5.2 Multiferroic-Based Devices;160
4.3.6;3.6 Challenges for Multiferroic-Based Memories and Devices;162
4.3.7;3.7 Conclusions: Looking to the Future;163
4.3.8;References;163
5;Part II: Resistance and Phase Change Memories;177
5.1;Chapter 4: Phase-Change Materials for Data Storage Applications;178
5.1.1;4.1 The Basic Principle of Phase-Change Based Data Storage;178
5.1.2;4.2 The Crystalline Phase;180
5.1.3;4.3 From the Crystalline to the Amorphous Phase;183
5.1.3.1;4.3.1 Glass Formation;183
5.1.3.2;4.3.2 Glass Rigidity and Bond Constraint Theory;185
5.1.4;4.4 The Amorphous Phase;187
5.1.4.1;4.4.1 Atomic Structure;187
5.1.4.2;4.4.2 Electrical Properties;189
5.1.5;4.5 Crystallization of an Amorphous Bit;191
5.1.5.1;4.5.1 Classical Theory of Crystallization;191
5.1.5.2;4.5.2 Atomistic Modeling of Crystallization;193
5.1.6;4.6 Applications Employing Phase-Change Materials;194
5.1.6.1;4.6.1 Optical Storage;195
5.1.6.2;4.6.2 Electronic Storage;195
5.1.7;References;197
5.2;Chapter 5: Emerging Oxide Resistance Change Memories;203
5.2.1;5.1 Introduction;204
5.2.1.1;5.1.1 Overview of Oxide Resistance Change Memory;204
5.2.2;5.2 Resistance Change in Oxide-Based Materials;206
5.2.2.1;5.2.1 Resistance Switching Properties;206
5.2.2.2;5.2.2 Oxide-Based Resistance Memory Classifications;207
5.2.2.2.1;5.2.2.1 Binary Oxides;207
5.2.2.2.2;5.2.2.2 Perovskites;211
5.2.2.2.3;5.2.2.3 Solid Electrolyte Based Materials;213
5.2.2.2.4;5.2.2.4 Summary;214
5.2.3;5.3 Oxide RRAM Based Materials and Applications;214
5.2.3.1;5.3.1 RRAM Scaling;214
5.2.3.2;5.3.2 Oxide-Based Switches for RRAM;216
5.2.3.3;5.3.3 RRAM State of the Art;220
5.2.3.4;5.3.4 Summary;221
5.2.4;5.4 Outlook and Future of RRAM;223
5.2.4.1;5.4.1 Conclusion;224
5.2.5;References;224
5.3;Chapter 6: Oxide Based Memristive Nanodevices;227
5.3.1;6.1 Section 1: Switching mechanism;228
5.3.1.1;6.1.1 Introduction;228
5.3.1.2;6.1.2 Experiment;229
5.3.1.3;6.1.3 Switching Behavior;230
5.3.1.4;6.1.4 Switching Mechanism;233
5.3.2;6.2 Section 2: A Device Family;236
5.3.2.1;6.2.1 Concept of the Device Family;236
5.3.2.2;6.2.2 Realization of the Device Family;240
5.3.3;6.3 Section 3: Electroforming Mechanism;244
5.3.3.1;6.3.1 Introduction;244
5.3.3.2;6.3.2 Experiment;244
5.3.3.3;6.3.3 Gas Bubble Formation;245
5.3.3.4;6.3.4 Electroforming Mechanism;249
5.3.4;6.4 Section 4: Device Engineering;253
5.3.4.1;6.4.1 Introduction;253
5.3.4.2;6.4.2 Device Engineering by Seeding the Switching Centers;254
5.3.4.3;6.4.3 Electroforming-Free Devices with a Bi-layer Oxide;259
5.3.5;6.5 Section 5: Summary;261
5.3.6;References;262
6;Part III: Probe Memories;265
6.1;Chapter 7: Ferroelectric Probe Storage Devices;266
6.1.1;7.1 Introduction;266
6.1.2;7.2 Principle and History of Information Storage Devices;267
6.1.3;7.3 Understanding Key Processes of Information Storage;270
6.1.4;7.4 Ferroelectric Materials as Storage Media;273
6.1.5;7.5 Ferroelectric Hard Disk Drive;274
6.1.6;7.6 Conclusion;278
6.1.7;References;280




