Finlay | Predictive Analytics, Data Mining and Big Data | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 261 Seiten

Reihe: Business in the Digital Economy

Finlay Predictive Analytics, Data Mining and Big Data

Myths, Misconceptions and Methods
2014
ISBN: 978-1-137-37928-3
Verlag: Palgrave Macmillan UK
Format: PDF
Kopierschutz: 1 - PDF Watermark

Myths, Misconceptions and Methods

E-Book, Englisch, 261 Seiten

Reihe: Business in the Digital Economy

ISBN: 978-1-137-37928-3
Verlag: Palgrave Macmillan UK
Format: PDF
Kopierschutz: 1 - PDF Watermark



This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.  

Finlay Predictive Analytics, Data Mining and Big Data jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Half-Title;2
3;Title;4
4;Copyright;5
5;Dedication;6
6;Contents;8
7;Figures and Tables;11
8;Acknowledgments;13
9;1 Introduction;14
9.1;1.1 What are data mining and predictive analytics?;15
9.2;1.2 How good are models at predicting behavior?;19
9.3;1.3 What are the benefits of predictive models?;20
9.4;1.4 Applications of predictive analytics;22
9.5;1.5 Reaping the benefits, avoiding the pitfalls;24
9.6;1.6 What is Big Data?;26
9.7;1.7 How much value does Big Data add?;29
9.8;1.8 The rest of the book;32
10;2 Using Predictive Models;34
10.1;2.1 What are your objectives?;35
10.2;2.2 Decision making;36
10.3;2.3 The next challenge;44
10.4;2.4 Discussion;47
10.5;2.5 Override rules (business rules);49
11;3 Analytics, Organization and Culture;52
11.1;3.1 Embedded analytics;53
11.2;3.2 Learning from failure;55
11.3;3.3 A lack of motivation;56
11.4;3.4 A slight misunderstanding;58
11.5;3.5 Predictive, but not precise;63
11.6;3.6 Great expectations;65
11.7;3.7 Understanding cultural resistance to predictive analytics;67
11.8;3.8 The impact of predictive analytics;73
11.9;3.9 Combining model-based predictions and human judgment;75
12;4 The Value of Data;78
12.1;4.1 What type of data is predictive of behavior?;79
12.2;4.2 Added value is what's important;83
12.3;4.3 Where does the data to build predictive models come from?;86
12.4;4.4 The right data at the right time;89
12.5;4.5 How much data do I need to build a predictive model?;92
13;5 Ethics and Legislation;98
13.1;5.1 A brief introduction to ethics;99
13.2;5.2 Ethics in practice;102
13.3;5.3 The relevance of ethics in a Big Data world;103
13.4;5.4 Privacy and data ownership;105
13.5;5.5 Data security;109
13.6;5.6 Anonymity;110
13.7;5.7 Decision making;112
14;6 Types of Predictive Models;117
14.1;6.1 Linear models;119
14.2;6.2 Decision trees (classification and regression trees);125
14.3;6.3 (Artificial) neural networks;127
14.4;6.4 Support vector machines (SVMs);131
14.5;6.5 Clustering;133
14.6;6.6 Expert systems (knowledge-based systems);135
14.7;6.7 What type of model is best?;137
14.8;6.8 Ensemble (fusion or combination) systems;141
14.9;6.9 How much benefit can I expect to get from using an ensemble?;143
14.10;6.10 The prospects for better types of predictive models in the future;144
15;7 The Predictive Analytics Process;147
15.1;7.1 Project initiation;148
15.2;7.2 Project requirements;151
15.3;7.3 Is predictive analytics the right tool for the job?;155
15.4;7.4 Model building and business evaluation;156
15.5;7.5 Implementation;158
15.6;7.6 Monitoring and redevelopment;162
15.7;7.7 How long should a predictive analytics project take?;167
16;8 How to Build a Predictive Model;170
16.1;8.1 Exploring the data landscape;171
16.2;8.2 Sampling and shaping the development sample;172
16.3;8.3 Data preparation (data cleaning);175
16.4;8.4 Creating derived data;176
16.5;8.5 Understanding the data;177
16.6;8.6 Preliminary variable selection (data reduction);178
16.7;8.7 Pre-processing (data transformation);179
16.8;8.8 Model construction (modeling);183
16.9;8.9 Validation;184
16.10;8.10 Selling models into the business;185
16.11;8.11 The rise of the regulator;189
17;9 Text Mining and Social Network Analysis;192
17.1;9.1 Text mining;192
17.2;9.2 Using text analytics to create predictor variables;194
17.3;9.3 Within document predictors;194
17.4;9.4 Sentiment analysis;197
17.5;9.5 Across document predictors;198
17.6;9.6 Social network analysis;199
17.7;9.7 Mapping a social network;204
18;10 Hardware, Software and All that Jazz;207
18.1;10.1 Relational databases;210
18.2;10.2 Hadoop;213
18.3;10.3 The limitations of Hadoop;215
18.4;10.4 Do I need a Big Data solution to do predictive analytics?;216
18.5;10.5 Software for predictive analytics;219
19;Appendix A. Glossary of Terms;222
20;Appendix B. Further Sources of Information;231
21;Appendix C. Lift Charts and Gain Charts;236
22;Notes;240
23;Index;259



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.