Bahmani Algorithms for Sparsity-Constrained Optimization
2014
ISBN: 978-3-319-01881-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 261, 107 Seiten, eBook
Reihe: Springer Theses
ISBN: 978-3-319-01881-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Introduction.- Preliminaries.- Sparsity-Constrained Optimization.- Background.- 1-bit Compressed Sensing.- Estimation Under Model-Based Sparsity.- Projected Gradient Descent for `p-constrained Least Squares.- Conclusion and Future Work.- Appendix A Proofs of Chapter 3.- Appendix B Proofs of Chapter 4.- Appendix C Proofs of Chapter 5.- Appendix D Proofs of Chapter 6.




