Buch, Englisch, Band 261, 107 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 3497 g
Reihe: Springer Theses
Buch, Englisch, Band 261, 107 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 3497 g
Reihe: Springer Theses
ISBN: 978-3-319-01880-5
Verlag: Springer International Publishing
This thesis demonstrates techniques that provide faster and more accurate solutions to a variety of problems in machine learning and signal processing. The author proposes a "greedy" algorithm, deriving sparse solutions with guarantees of optimality. The use of this algorithm removes many of the inaccuracies that occurred with the use of previous models.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
Weitere Infos & Material
Introduction.- Preliminaries.- Sparsity-Constrained Optimization.- Background.- 1-bit Compressed Sensing.- Estimation Under Model-Based Sparsity.- Projected Gradient Descent for `p-constrained Least Squares.- Conclusion and Future Work.- Appendix A Proofs of Chapter 3.- Appendix B Proofs of Chapter 4.- Appendix C Proofs of Chapter 5.- Appendix D Proofs of Chapter 6.




