E-Book, Englisch, 820 Seiten, Web PDF
Reihe: IFAC Symposia Series
Zwicky Control in Power Electronics and Electrical Drives
1. Auflage 2014
ISBN: 978-1-4832-9864-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Third IFAC Symposium, Lausanne, Switzerland, 12-14 September 1983
E-Book, Englisch, 820 Seiten, Web PDF
Reihe: IFAC Symposia Series
ISBN: 978-1-4832-9864-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Contains 97 papers which provide a valuable overview of the latest technical innovations in this rapidly expanding field. Areas of development which receive particular attention include the emergence of power switching transistors, the application of microprocessors to regulation and control of static converters and electrical drives, the use of more sophisticated control strategies and the utilization of power electronics in new application fields.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Control in Power Electronics and Electrical Drives;4
3;Copyright Page;5
4;Table of Contents;8
5;FOREWORD;7
6;SESSION 1: A - MODELLING AND CONTROL LAWS;16
6.1;CHAPTER 1. CLOSED MATHEMATICAL DESCRIPTION OF LINE COMMUTATED CONVERTER-DRIVES;16
6.1.1;ABSTRACT;16
6.1.2;1. INTRODUCTION;16
6.1.3;2. SYSTEM DESCRIPTION;17
6.1.4;3. DIGITAL SPEED OBSERVER;20
6.1.5;4. CONCLUSION;23
6.1.6;REFERENCES;23
6.2;CHAPTER 2. NON-LINEAR AND LINEARIZED MODELS FOR CONTROL SYSTEMS INCLUDING STATIC CONVERTERS;24
6.2.1;INTRODUCTION;24
6.2.2;RECURRENCY EQUATION ON A STRUCTURE;25
6.2.3;JOINING AT CONTROL INSTANTS;25
6.2.4;JOINTS AT EVENTS OCCURING IN SYSTEMS WITH SEVERAL MODES OF OPERATION;27
6.2.5;CONCLUSION;31
6.2.6;BIBLIOGRAPHY;31
6.3;CHAPTER 3. APPROXIMATE EXPRESSIONS OF THE RESIDUES OF A GENERALIZED MACHINE MODEL;32
6.3.1;INTRODUCTION;32
6.3.2;CONSIDERATIONS ON THE RESIDUES EVALUATION;32
6.3.3;THE MODEL DESCRIPTION;33
6.3.4;THE MODAL MATRICES DETERMINATION;34
6.3.5;NUMERICAL VALIDATION OF THE RESULTS;37
6.3.6;CONCLUSIONS;37
6.3.7;REFERENCES;39
6.4;CHAPTER 4. OPTIMIZING OF THE EFFICIENCY BY THE CONTROL OF INVERTER-FED INDUCTION MACHINES ESPECIALLY REGARDING SATURATION AND HEAT EFFECTS;40
6.4.1;INTRODUCTION;40
6.4.2;IMPROVED EQUIVALENT CIRCUIT INCLUDING SATURATION EFFECTS AND ADDITIONAL LOSSES;41
6.4.3;OPTIMIZATION AND ESTABLISHMENT OF A CONTROL CHARACTERISTIC;43
6.4.4;INFLUENCE OF TEMPERATURE CAUSED RESISTANCE VARIATION ON SPEED CONTROLLED DRIVES AND ITS COMPENSATION;44
6.4.5;APPENDIX II;46
6.4.6;CONCLUSIONS;47
6.4.7;REFERENCES;47
6.5;CHAPTER 5. CONTROL LAWS OF ELECTRIC MACHINES;48
6.5.1;INTRODUCTION;48
6.5.2;CONTROL LAWS OF ELECTRIC DRIVE;48
6.5.3;ADAPTION TO PRACTICAL MACHINES;53
6.5.4;CONCLUSION;54
6.5.5;REFERENCES;55
6.6;CHAPTER 6. A NOVEL APPROACH ON PARAMETER SELF-TUNING METHOD IN AC SERVO SYSTEM;56
6.6.1;INTRODUCTION;56
6.6.2;INDUCTION MOTOR DYNAMIC EQUATION;56
6.6.3;PARAMETER IDENTIFICATION AT INITIAL STANDSTILL STATE;57
6.6.4;PARAMETER IDENTIFICATION AT OPERATING STEADY STATE;58
6.6.5;EXPERIMENTAL INVESTIGATIONS TO PROPOSED IDENTIFICATION METHOD;59
6.6.6;CONCLUSION;62
6.6.7;NOMENCLATURE;63
6.6.8;REFERENCES;63
6.7;CHAPTER 7. A MICROCOMPUTER SYSTEM FOR ESTIMATING THE PARAMETERS OF AN INDUCTION MOTOR MODEL;64
6.7.1;INTRODUCTION;64
6.7.2;MODELLING ANALYSIS OF THE CONTROLLED CURRENT MOTOR;64
6.7.3;IDENTIFICATION;66
6.7.4;ACKNOWLEDGEMENTS;69
6.7.5;REFERENCES;69
6.8;CHAPTER 8. A METHOD FOR DETERMINING THE SPEED AND ROTOR FLUX OF THE ASYNCHRONOUS MACHINE BY MEASURING THE TERMINAL QUANTITIES ONLY;70
6.8.1;INTRODUCTION;70
6.8.2;MODEL OF THE ASM;70
6.8.3;ALGORITHM OF THE ESTIMATES;74
6.8.4;CONCLUSION;76
6.8.5;REFERENCES;77
6.9;CHAPTER 9. A PROPOSAL FOR AVOIDING THE DIRECT MEASUREMENT OF SPEED AND ANGULAR POSITION OF THE SYNCHRONOUS MACHINE;78
6.9.1;INTRODUCTION;78
6.9.2;DISCRETE MODEL OF THE SM;78
6.9.3;CONCLUSION;83
6.9.4;REFERENCES;83
6.10;CHAPTER 10. SPEED CONTROL BY MICROPROCESSOR FOR AN INDUCTION MACHINE FED BY A STATIC CONVERTER;84
6.10.1;INTRODUCTION;84
6.10.2;SYSTEM DESCRIPTION AND BASIC EQUATIONS;84
6.10.3;STATE OBSERVER;85
6.10.4;DESIGN OF THE CONTROL LAWS;85
6.10.5;RESULTS;86
6.10.6;CONCLUSION;86
6.10.7;ALNOWLEPGMENT;86
6.10.8;SYMBOLS;86
6.10.9;BIBLIOGRAPHY;87
6.11;CHAPTER 11. NON LINEAR CONTROLLER ALLOWING FOR AN UPPER BOUND ON THE SYSTEM INTERNAL VARIABLES;92
6.11.1;INTRODUCTION;92
6.11.2;DESIGN OF LINEAR CONTROLLER;92
6.11.3;PRACTICAL IMPLEMENTATION OF CONTROLLER;94
6.11.4;DESIGN OF CONTROLLER NONLINEARITY;95
6.11.5;NUMERICAL EXAMPLE;97
6.11.6;CONCLUSIONS;99
6.11.7;REFERENCES;99
6.11.8;APPENDIX A;99
6.11.9;APPENDIX B;100
6.11.10;APPENDIX C;100
6.12;CHAPTER 12. SPEED CONTROL OF AN AC MOTOR BY STATE VARIABLES FEEDBACK WITH DECOUPLING;102
6.12.1;INTRODUCTION;102
6.12.2;SYSTEM TO BE CONTROLLED;102
6.12.3;STATOR CURRENT CONTROL;104
6.12.4;SPEED CONTROL;107
6.12.5;CONCLUSION;107
6.12.6;REFERENCES;108
6.13;CHAPTER 13. COMPARISON AMONG VARIOUS APPROACHES FOR THE OPTIMAL FEEDBACK CONTROL OF INDUCTION MOTOR DRIVES;110
6.13.1;INTRODUCTION;110
6.13.2;FORMULATION OF THE CONTROL PROBLEM;111
6.13.3;SOLUTION OF THE CONTROL PROBLEM;112
6.13.4;PERFORMANCES OF THE PROPOSED SOLUTION APPROACHES;114
6.13.5;CONCLUSIONS;116
6.13.6;REFERENCES;116
6.14;CHAPTER 14. FIELD-ORIENTED CONTROL BY FORCED MOTOR CURRENTS IN A VOLTAGE FED INVERTER DRIVE;118
6.14.1;INTRODUCTION;118
6.14.2;REVIEW OF RECENT METHODS FOR INVERTER CONTROL;118
6.14.3;FIELD ORIENTATION;119
6.14.4;PREDICTIVE CONTROLLER;120
6.14.5;MACHINE MODEL;122
6.14.6;DRIVE CONTROL SYSTEM;122
6.14.7;RESULTS;123
6.14.8;CONCLUSION;124
6.14.9;APPENDIX I;125
6.14.10;APPENDIX II;125
6.14.11;ACKNOWLEDGEMENT;125
6.14.12;REFERENCES;125
6.15;CHAPTER 15. CASCADE CONTROL BY STATE VARIABLE FEEDBACK METHOD APPLIED TO A SYNCHRONOUS MOTOR;126
6.15.1;INTRODUCTION;126
6.15.2;SYSTEM TO BE CONTROLLED;126
6.15.3;CASCADE STATE CONTROL;127
6.15.4;THREE CURRENTS STATE CONTROL;129
6.15.5;BIBLIOGRAPHY;132
6.16;CHAPTER 16. MICROPROCESSOR-BASED ADAPTIVE CONTROL FOR ELECTRICAL DRIVES;134
6.16.1;INTRODUCTION;134
6.16.2;IDENTIFICATION WITH RLS;135
6.16.3;POLE ASSIGNMENT CONTROLLER;135
6.16.4;APPLICATION;136
6.16.5;RESULTS;137
6.16.6;CONCLUSIONS;139
6.16.7;ACKNOWLEDGEMENT;139
6.16.8;REFERENCES;139
6.17;CHAPTER 17. ADAPTIVE CONTROL DESIGN IN SERVOSYSTEMS;140
6.17.1;INTRODUCTION;140
6.17.2;THE AMFC SYSTEM;141
6.17.3;D.C. DRIVE MODELING AND CONTROL;142
6.17.4;REMARKS ON CONTROL IMPLEMENTATION;143
6.17.5;EXPERIMENTAL RESULTS;144
6.17.6;CONCLUSIONS;145
6.17.7;AKNOWLEDGMENT;146
6.17.8;REFERENCES;146
6.18;CHAPTER 18. SLIDING MODES IN CONTROLLED MOTOR DRIVES;148
6.18.1;INTRODUCTION;148
6.18.2;D.C. MOTOR CONTROL;149
6.18.3;ASYNCHRONOUS MOTOR CONTROL;151
6.18.4;CONCLUSION;153
6.18.5;REFERENCES:;153
6.19;CHAPTER 19. CURRENT INVERTER IN THE SLIDING MODE FOR INDUCTION MOTOR CONTROL;154
6.19.1;INTRODUCTION;154
6.19.2;VOLTAGE INVERTER;154
6.19.3;CONTROL OF STATOR CURRENT;155
6.19.4;CONCLUSION;159
6.19.5;REFERENCES;159
6.20;CHAPTER 20. MICROPROCESSOR-BASED FORCE CONTROL FOR MANIPULATOR USING VARIABLE STRUCTURE WITH SLIDING MODE;160
6.20.1;INTRODUCTION;160
6.20.2;DERIVATION OF MODEL;160
6.20.3;EXPERIMENTAL RESULTS;161
6.20.4;CONCLUSION;162
6.21;CHAPTER 21. EFFECT OF SOURCE REACTANCE ON THE CONTROLLABLE THREE-PHASE BRIDGE RECTIFIER OPERATION WITH SERIES R-L LOADS;166
6.21.1;INTRODUCTION;166
6.21.2;2/3 MODE OF OPERATION;166
6.21.3;3/3 MODE OF OPERATION;167
6.21.4;3/4 MODE OF OPERATION;168
6.21.5;CONCLUSIONS;169
6.21.6;REFERENCES;169
6.21.7;LIST OF SYMBOLS;169
6.22;CHAPTER 22. THE FAMILY OF COMMUTATION MODES OF CONVERTERS;174
6.22.1;1. INTRODUCTION;174
6.22.2;2. DEFINITION;175
6.22.3;3. COMMUTATION MODES IN PLANE (id,ud);175
6.22.4;4. STRAIGHT LINES;176
6.22.5;5. ELLIPSES;176
6.22.6;6. DETERMINATION OF .0;176
6.22.7;7. APPLICATIONS;177
6.22.8;8. CONCLUSION;179
6.22.9;REFERENCES;179
6.22.10;APPENDIX A;179
6.23;CHAPTER 23. DESIGN OF SNUBBER CIRCUITS FOR A TRANSISTOR-INVERTER USING A MINIMUM NUMBER OF COMPONENTS;180
6.23.1;INTRODUCTION;180
6.23.2;INVERTER USING BIPOLAR TRANSISTORS;180
6.23.3;INVERTER USING POWER-MOS TRANSISTORS;182
6.23.4;CONCLUSION;183
6.23.5;REFERENCES;183
6.24;CHAPTER 24. AC CHOPPER WITH CONTROLLED FREE-WHEELING;188
6.24.1;INTRODUCTION;188
6.24.2;GENERAL SCHEME AND PRINCIPLES OF OPERATIONS;188
6.24.3;TRANSISTOR IMPLEMENTATION;189
6.24.4;GTO IMPLEMENTATION;191
6.24.5;THYRISTOR IMPLEMENTATION;192
6.24.6;EXPERIMENTAL RESULTS;193
6.24.7;CONCLUSIONS;194
6.24.8;Acknowledgements.;194
6.24.9;References;194
6.25;CHAPTER 25. OUTPUT WAVEFORMS FROM CONTROLLED SWITCHED-MODE DC TO AC CONVERTERS;196
6.25.1;ABSTRACT;196
6.25.2;INTRODUCTION;196
6.25.3;SIMULATION;196
6.25.4;SIGNAL ANALYSIS;197
6.25.5;RESULTS;197
6.25.6;CONCLUSIONS;198
6.25.7;ACKNOWLEDGEMENTS;198
6.25.8;REFERENCES;198
6.26;CHAPTER 26. A DIRECT FREQUENCY CHANGER WITH CONTROL OF INPUT REACTIVE POWER;202
6.26.1;INTRODUCTION;202
6.26.2;OPERATION PRINCIPLE OF THE POWER CONVERTER;202
6.26.3;LAWS OF OPERATION WITH A SYNTHESIZED TRANSFER VECTOR;204
6.26.4;DESCRIPTION OF ASIGNAL PROCESSING UNIT;206
6.26.5;EXPERIMENTAL RESULTS;208
6.26.6;REFERENCES;209
6.27;CHAPTER 27. CURRENT ZERO POINT DETECTION IN NONCIRCULATING CYCLOCONVERTER BASED ON DYNAMIC CHARACTERISTICS OF THYRISTOR-DIODE SERIES CIRCUIT;210
6.27.1;INTRODUCTION;210
6.27.2;DETECTION CHARACTERISTICS OF PROPOSED METHOD;210
6.27.3;APPLICATIONS TO THREE PHASE NCC;214
6.27.4;EXPERIMENTAL INVESTIGATIONS;215
6.27.5;CONCLUSIONS;215
6.27.6;ACKNOWLEDGEMENT;215
6.27.7;NOMENCLATURE;216
6.27.8;REFERENCES;216
6.28;CHAPTER 28. A NEW CONTROL TECHNIQUE FOR AC-AC CONVERTERS;218
6.28.1;INTRODUCTION;218
6.28.2;WORKING PRINCIPLE OF THE CONVERTER;219
6.28.3;CONTROL;221
6.28.4;PRACTICAL CONSIDERATIONS;223
6.28.5;CONCLUSIONS;223
6.28.6;ACKNOWLEDGEMENT;223
6.28.7;REFERENCES;223
6.29;CHAPTER 29. COMMUTATION CONTROL OF CURRENT SOURCE INVERTER USING GTO THYRISTORS;224
6.29.1;INTRODUCTION;224
6.29.2;INVERTER CIRCUIT AND BASIC OPERATION;225
6.29.3;EXPERIMENTAL RESULTS;227
6.29.4;STEADY-STATE ANALYSIS;228
6.29.5;CONCLUSION;231
6.29.6;ACKNOWLEDGEMENT;231
6.29.7;REFERENCES;231
6.30;CHAPTER 30. DC TO AC CONVERTER FOR CONTROLLED DRIVES, BASED ON A NOVEL HIGH EFFICIENCY,HIGH CURRENT TRANSISTOR SWITCH;232
6.30.1;AC CONVERTER TECHNOLOGY FOR DRIVES;232
6.30.2;SIMPLIFICATION OF MULTIPHASE AC TO DC CONVERTERS;232
6.30.3;CHARACTERISTICS OF THE PA-B6 DC/AC CONVERTER;233
6.30.4;DEVELOPMENT OF A LOW LOSS POWER SWITCH;234
6.30.5;COMPARATIVE ANALYSIS OF POWER SWITCH LOSSES;236
6.30.6;EXPERIMENTAL RESULTS;237
6.30.7;CONCLUSION AND EVALUATION;238
6.30.8;REFERENCES;238
6.30.9;ACKNOWLEDGEMENT;239
6.31;CHAPTER 31. COMPARATIVE LOSSES OF FORCED-COMMUTATED AND GATE TURN-OFF THYRISTOR CHOPPERS;240
6.31.1;LIST OF SYMBOLS;240
6.31.2;INTRODUCTION;240
6.31.3;RESONANT PULSE CHOPPER;240
6.31.4;LOSSES OF RESONANT PULSE CHOPPER;241
6.31.5;IMPULSE COMMUTATED CHOPPER;242
6.31.6;COMPARATIVE LOSSES;243
6.31.7;GTO THYRISTOR CHOPPER;243
6.31.8;CONCLUSIONS;243
6.31.9;ACKNOWLEDGEMENT;244
6.31.10;REFERENCES;244
6.32;CHAPTER 32. PULSE WIDTH MODULATED (PWM) INVERTERS FOR EFFICIENCY OPTIMAL CONTROL OF AC DRIVES - SWITCHING ANGLES AND EFFICIENCY/LOSS PROFILES;246
6.32.1;INTRODUCTION;246
6.32.2;LIST OF VARIABLES AND ABBREVIATIONS;246
6.32.3;VOLTAGE PATTERNS;246
6.32.4;MOTOR MODEL;248
6.32.5;EFFICIENCY OPTIMIZATION METHOD;248
6.32.6;SOLUTIONS;248
6.32.7;CONCLUSIONS;252
6.32.8;REFERENCES;253
6.32.9;APPENDIX;253
6.33;CHAPTER 33. PULSE WIDTH MODULATION WITH HYBRID SAMPLING TECHNIQUES;254
6.33.1;INTRODUCTION;254
6.33.2;DEFINITIONS;254
6.33.3;EXPERIMENTAL MEASURMENTS;259
6.33.4;REFERENCES;260
6.34;CHAPTER 34. NEAR-OPTIMUM ON-LINE MODULATION OF PWM INVERTERS;262
6.34.1;1. HARMONIC LOSSES IN A SQUIRRELCAGE ROTOR;262
6.34.2;2. POLYGON TRACKS;263
6.34.3;3. THE HIDDEN PATTERN;264
6.34.4;4. THE INVERTER AND THE TRACK;265
6.34.5;5. IMPLEMENTATION;267
6.34.6;REFERENCES;269
6.35;CHAPTER 34. A PWM INVERTER CONTROL CONSIDERING THE MODES OF OPERATION OF THE INVERTER;270
6.35.1;INTRODUCTION;270
6.35.2;ON THE MODULATION TECHNIQUE;271
6.35.3;COMMUTATION PROCESSES;272
6.35.4;EXPERIMENTAL RESULTS;274
6.35.5;CONCLUSION;274
6.35.6;REFERENCES;275
6.36;CHAPTER 35. INSTABILITY REGIONS OF VARIABLE FREQUENCY SUPPLIED ASYNCHRONOUS MOTORS;278
6.36.1;INTRODUCTION;278
6.36.2;3rd DEGREE ALGEBRAIC EQUATION FOR STABILITY ANALYSIS;279
6.36.3;WIDE RANGE ANALYSIS ON REALLY BUILT UP MACHINES;280
6.36.4;INSTABILITY ANALYSIS INTO THE WORLD OF THE ASYNCHRONOUS MOTOR DESIGN;280
6.36.5;CONCLUSIONS;282
6.36.6;LIST OF SYMBOLS;282
6.36.7;REFERENCE;282
6.37;CHAPTER 36. FORCED OSCILLATIONS OF INDUCTION MOTOR;286
6.37.1;INTRODUCTION;286
6.37.2;MATHEMATICAL MODELS;286
6.37.3;ANALYSIS OF FORCED OSCILLATIONS SYSTEM;287
6.37.4;NUMERICAL RESULTS;287
6.37.5;CONCLUSION;289
6.37.6;LIST OF SYMBOLS;289
6.37.7;REFERENCES;289
6.38;CHAPTER 37. ANALYSIS OF AN INVERTER-FED SINGLE-PHASE INDUCTION MOTOR DRIVE;290
6.38.1;INTRODUCTION;290
6.38.2;CHOICE OF THE VOLTAGE-FREQUENCY LAW;290
6.38.3;RESULTS;292
6.38.4;CONCLUSION;294
6.38.5;APPENDIX;295
6.38.6;LIST OF SYMBOLS;295
6.38.7;REFERENCES;296
6.39;CHAPTER 38. EVALUATION OF THE FUNCTIONAL QUANTITIES OF A POLYPHASE INDUCTION MOTOR SUPPLIED BY SCR VOLTAGE CONTROL;298
6.39.1;INTRODUCTION;298
6.39.2;THE METHOD OF APPROACH;299
6.39.3;THE WAVE-FORM OF THE FUNCTIONAL QUANTITIES OF THE MOTOR;301
6.39.4;SOME EXAMPLES;301
6.39.5;CONCLUSIONS;302
6.39.6;REFERENCES;303
6.40;CHAPTER 39. SIX THYRISTOR AC CHOPPER FEEDING A 3-PHASE ASYNCHRONOUS MOTOR: MOTOR MODEL ALLOWING THE CALCULUS OF THE CONTROL CHARACTERISTICS;304
6.40.1;1. INTRODUCTION;304
6.40.2;2. MODEL AND ITS USE FOR THE STUDY OF THE SINUSOIDAL VOLTAGE FED ASYNCHRONOUS MOTOR;304
6.40.3;3. CHARACTERISTICS OF THE 6 S.C.R. THREE PHASE A.C. CHOPPER;307
6.40.4;4. CONTROL CHARACTERISTICS;308
6.40.5;5. CONCLUSIONS;310
6.40.6;Refrences;310
6.41;CHAPTER 40. CONTROL OF THE INDUCTION MACHINE IN THE FIELD WEAKENING RANGE;312
6.41.1;INTRODUCTION;312
6.41.2;MACHINE THEORY;312
6.41.3;CONTROL SCHEMES WITH VOLTAGESOURCE INVERTER;313
6.41.4;ROTOR POSITION MEASUREMENT - (Fig. 1);313
6.41.5;ROTOR EMF MEASUREMENT - (Fig. 2;313
6.41.6;FLUX CONTROL BY DIRECT USE OFROTOR EMF;313
6.41.7;FIELD WEAKENING AT THE VOLTAGE LIMIT;314
6.41.8;OPTIMAL CONTROL IN THE RECTANGULAR VOLTAGE RANGE;314
6.41.9;REFERENCES;315
6.42;CHAPTER 41. CONTROL OF INVERTER-FED ASYNCHRONOUS MOTORS VIA DECOUPLING NETWORKS;320
6.42.1;INTRODUCTION;320
6.42.2;PRINCIPLE;320
6.42.3;DECOUPLING NETWORKS;321
6.42.4;TECHNICAL REALIZATION;322
6.42.5;BASE SPEED RANGE;323
6.42.6;FIELD-WEAKENING RANGE;323
6.42.7;PARAMETER SENSITIVITY;324
6.42.8;EXPERIMENTAL RESULTS;325
6.42.9;CONCLUSION;326
6.42.10;REFERENCES;327
6.43;CHAPTER 42. COMPARISON OF DYNAMIC BEHAVIOUR OF FREQUENCY CONVERTER FED INDUCTION MACHINE DRIVES;328
6.43.1;INTRODUCTION;328
6.43.2;BLOCK DIAGRAM OF AN INDUCTION MACHINE FEDBY CURRENT CONTROLLED FREQUENCY CONVERTER;328
6.43.3;TORQUE CONTROL METHODS WITH VARIABLE FLUX;332
6.43.4;CONCLUSIONS;334
6.43.5;REFERENCES;334
6.43.6;LIST OF SYMBOLS;335
6.44;CHAPTER 43. EFFECTS OF STRUCTURAL ERROR ON DYNAMIC STABILITY IN BOTH SLIP FREQUENCY CONTROL AND FIELD ORIENTATION CONTROL OF INDUCTION MOTOR DRIVE;336
6.44.1;INTRODUCTION;336
6.44.2;FUNDAMENTAL SYSTEM DESCRIPTION;337
6.44.3;PARAMETER AND DETECTION ERROR ANALYSIS;337
6.44.4;EXPERIMENTAL INVESTIGATIONS;340
6.44.5;CONCLUSION;342
6.44.6;ACKNOWLEDGEMENT;343
6.44.7;Reference;343
6.45;CHAPTER 43. STABILITY IMPROVEMENT OF A CURRENT SOURCE INVERTER-INDUCTION MOTOR DRIVESYSTEM;344
6.45.1;INTRODUCTION;344
6.45.2;STABILITY ANALYSIS;344
6.45.3;EXPERIMENTAL RESULTS;349
6.45.4;NEW COMMUTATION TYPE CSI;351
6.45.5;CONCLUSION;351
6.45.6;REFERENCES;351
6.46;CHAPTER 44. SUB- AND SUPER-SYNCHRONOUS CASCADE WITH CURRENT-SOURCE INVERTER;352
6.46.1;INTRODUCTION;352
6.46.2;CONTROL AND SIGNAL PROCESSING;353
6.46.3;EXPERIMENTAL RESULTS;355
6.46.4;CONCLUSION;358
6.46.5;REFERENCES;358
6.47;CHAPTER 45. SUB- AND SUPER-SYNCHRONOUS INDUCTION MOTOR-THYRISTOR CASCADE CONTROL;360
6.47.1;INTRODUCTION;360
6.47.2;BASIC PRINCIPLES;361
6.47.3;THE CURRENT SOURCE CONVERTER;361
6.47.4;THE MODIFIED CONVERTER;363
6.47.5;CONTROL SCHEME;364
6.47.6;EQUIVALENT CIRCUIT MODEL;365
6.47.7;CONCLUSION;367
6.47.8;ACKNOWLEDGEMENTS;367
6.47.9;REFERENCES;367
6.48;CHAPTER 46. HIGH-SPEED INDUCTION MOTOR DRIVES:STARTING OPERATION CONTROL;368
6.48.1;INTRODUCTION;368
6.48.2;PROBLEM STATEMENTS;369
6.48.3;PROPOSED METHOD DESCRIPTION;370
6.48.4;MATHEMATICAL MODEL;371
6.48.5;METHOD VERIFICATIONFINAL RESULTS;372
6.48.6;ACKNOWLEDGEMENT;374
6.48.7;REFERENCES;374
6.49;CHAPTER 47. INCREMENTAL MOTION CONTROL SYSTEM WITH ASYNCHRONOUS MOTOR;376
6.49.1;INTRODUCTION;376
6.49.2;SUPPLY POSSIBILITIES INSTEP BY STEP OPERATION;377
6.49.3;ELECTROMAGNETIC TORQUE DEVELOPED IN STEPPING REGIME;378
6.49.4;EFFECTS OF THE THYRISTOR CONVERTER PERFORMANCES;380
6.49.5;EXPERIMENTAL RESULTS;381
6.49.6;NUMERICAL MODELLINGAND SIMULATION;382
6.49.7;CONCLUSIONS;383
6.49.8;REFERENCES;383
6.50;CHAPTER 48. ANALYSIS AND DESIGN OF CONVERTER-SEPARATED THREE-PHASE HYBRID SYNCHRONOUS MACHINE;384
6.50.1;INTRODUCTION;384
6.50.2;SEPARATED THREE PHASE HYBRID SYNCHRONOUS MACHINE;384
6.50.3;MOTOR DYNAMIC ANALYSES;385
6.50.4;POWER SUPPLIES;385
6.50.5;RESULTS;387
6.50.6;CONCLUSION;388
6.50.7;REFERENCES;388
6.51;CHAPTER 49. CONVERTER-FED SYNCHRONOUS MACHINE WITH HIGH PERFORMANCE DYNAMIC BEHAVIOUR FOR SERVO-DRIVE APPLICATION;390
6.51.1;INTRODUCTION;390
6.51.2;CONVERTER;390
6.51.3;BASE-DRIVE;391
6.51.4;RELIEVING CIRCUITS;391
6.51.5;TIME DISCREET VARIATION;392
6.51.6;CONTROL UNIT;393
6.51.7;SYNCHRONOUS MACHINE;394
6.51.8;CONTROL SYSTEM;395
6.51.9;MEASUREMENT RESULTS;395
6.51.10;CONCLUSION;397
6.51.11;REFERENCES;397
6.52;CHAPTER 50. A SIMPLE MULTI-MOTOR DRIVE WITH CONVERTER-FED SYNCHRONOUS MACHINES WITH AC-EXCITATION;398
6.52.1;SUMMARY;398
6.52.2;KEYWORDS;398
6.52.3;INTRODUCTION;398
6.52.4;CONVERTER-FED SYNCHRONOUS MACHINES WITH AC-EXCITATION;399
6.52.5;MULTI-MOTOR DRIVE WITH CONVERTER-FED SYNCHRONOUS MACHINES WITH AC-EXCITATION;401
6.52.6;SPEED CONTROL SYSTEM;404
6.52.7;CONCLUSION;405
6.52.8;REFERENCES;405
6.53;CHAPTER 51. A SIMPLIFIED MODEL OF THE MULTIPLE ARMATURE, POLYPHASE SELF-CONTROLLED SYNCHRONOUS MACHINE;406
6.53.1;l. Introduction;406
6.53.2;2. A simplified model of the self controlledsynchronous machine;407
6.53.3;3. Influence of the armature coupling on theratings;410
6.53.4;4. Application;412
6.53.5;5. Conclusions;413
6.53.6;References;413
6.54;CHAPTER 52. THE CALCULATION OF DAMPER CURRENTS IN SYNCHRONOUS MACHINES AT DIFFERENT CURRENT WAVE FORMS;414
6.54.1;THE BASIC EQUATIONS;414
6.54.2;STATOR CURRENT PERFORMANCE IN THE d-q-FRAME;416
6.54.3;THE CURVES OF THE DAMPER CURRENTS;418
6.54.4;CONCLUSION;420
6.54.5;REFERENCES;420
6.54.6;A BRUSHLESS SYSTEM FOR POSITION CONTROL;422
6.54.7;INTRODUCTION;422
6.54.8;MOTOR MATHEMATICAL MODEL;422
6.54.9;SYSTEM DESCRIPTION;423
6.54.10;ANISOTROPIC MACHINE BEHAVIOUR;425
6.54.11;EXPERIMENTAL RESULTS;427
6.54.12;CONCLUSIONS;428
6.54.13;ACKNOWLEDGEMENT;428
6.54.14;REFERENCES;428
6.55;CHAPTER 53. PREDICTIVE CONTROL STRATEGY FOR CONVERTERS;430
6.55.1;MICROCOMPUTERS WORKING WITH CONTROL STRATEGIES UP TO NOW;430
6.55.2;STRATEGIES TO BE USED BY MICROCOMPUTERS;431
6.55.3;CONTROLLING CONVERTER CURRENTS BY THE PREDICTIVE STRATEGY;432
6.55.4;PRACTICAL RESULTS;436
6.55.5;CONCLUSION;437
6.55.6;REFERENCES;437
6.56;CHAPTER 54. DIGITAL CURRENT CONTROL OF A SIX-PULSE BRIDGE CONVERTER;438
6.56.1;INTRODUCTION;438
6.56.2;FEEDFORWARD CONTROL OF THE PHASECONTROLLE DCONVERTER;439
6.56.3;DESIGN OF THE CURRENT CONTROLLER;441
6.56.4;EXPERIMENTAL RESULTS;443
6.56.5;CONCLUSIONS;443
6.56.6;REFERENCES;444
6.57;CHAPTER 55. A MICROPROCESSOR CONTROL SCHEME FOR NATURALLY COMMUTATED THYRISTOR CONVERTER WITH VARIABLE FREQUENCY SUPPLY;446
6.57.1;INTRODUCTION;446
6.57.2;VOLTAGE CROSSOVER DETECTION;447
6.57.3;THYRISTOR FIRING CONTROL;448
6.57.4;HARDWARE DESCRIPTION;448
6.57.5;EXPERIMENTAL RESULTS;449
6.57.6;CONCLUSIONS;450
6.57.7;ACKNOWLEDGEMENTS;450
6.57.8;REFERENCES;450
6.58;CHAPTER 56. IMPROVEMENTS IN MICROPROCESSOR CONTROLLED TRIAC CYCLOCONVERTERS;452
6.58.1;INTRODUCTION;452
6.58.2;BASIC SCHEME AND PROBLEMS;452
6.58.3;ALGORITHMIC CHANGES FOR WAVEFORM IMPROVEMENT;454
6.58.4;CONCLUSION;458
6.58.5;ACKNOWLEDGEMENTS;458
6.58.6;REFERENCES;458
6.59;CHAPTER 57. AN OPTIMAL MICROCOMPUTER-CONTROLLED CONVERTER FOR FEEDING AC MOTORS;460
6.59.1;INTRODUCCIQN;460
6.59.2;CONTROL ROSE THEORY, EXISTENTIAL FUNCTION MODULATION (EFM);461
6.59.3;UNRESTRICTED FREQUENCY CHANGER;462
6.59.4;THREE PHASE BRIDGE INVERTER;463
6.59.5;CONCLUSIONS;464
6.59.6;REFERENCES;465
6.60;CHAPTER 58. A MICROPROCESSOR-BASED CONTROL STRATEGY FOR PWM INVERTERS;468
6.60.1;INTRODUCTION;468
6.60.2;ANALYSIS OF P.W.M. WAVEFORM;468
6.60.3;THE MICROPROCESSOR IMPLEMENTATION;468
6.60.4;THE MICROPROCESSOR SYSTEM;469
6.60.5;REFERENCES;470
6.61;CHAPTER 59. SIGNAL PROCESSOR CONTROLLER FOR A THREE-PHASE PWM INVERTER0;476
6.61.1;INTRODUCTION;476
6.61.2;BASIC REVIEW;476
6.61.3;SIGNAL PROCESSOR APPROACH;478
6.61.4;THREE-PHASE PWM INVERTER CONTROLLER;479
6.61.5;SOFTWARE DEVELOPMENT;480
6.61.6;EXPERIMENTAL RESULTS;481
6.61.7;CONCLUSIONS;482
6.61.8;REFERENCES;482
6.62;CHAPTER 60. THE USE OF MICROPROCESSORS FOR CONTROL AND FAULT DETECTION OF ELECTRONIC POWER CONVERTERS. CONTRIBUTION TO SAFETY AND MAINTAINABILITY;484
6.62.1;INTRODUCTION;484
6.62.2;THE SUPERVISION OF POWER EQUIPMENT :THE DETECTION AND LOCALIZATION OF FAULTS;485
6.62.3;THE EXPERIMENT;486
6.62.4;DETECTION AND LOCALIZATION OF FAULTS : DRIVE STRATEGIES;487
6.62.5;CONCLUSION;489
6.62.6;REFERENCES;489
6.63;CHAPTER 61. ON-LINE FAULT DETECTION AND LOCALIZATION IN ELECTRICAL DC-DRIVES BASED ON PROCESS PARAMETER ESTIMATION AND STATISTICAL DECISION METHODS;490
6.63.1;INTRODUCTION;490
6.63.2;FAULT DETECTION METHOD;490
6.63.3;PARAMETER ESTIMATION;491
6.63.4;FAULT DECISION AND LOCALIZATION;493
6.63.5;MATHEMATICAL MODEL OF A D.C.-MOTOR-PUMP-SYSTEM;494
6.63.6;SIMULATION RESULTS;495
6.63.7;ACKNOWLEDGEMENT;496
6.63.8;REFERENCES;496
6.64;CHAPTER 62. USER-RECONFIGURABLE DIGITAL DRIVE CONTROLLER;500
6.64.1;INTRODUCTION;500
6.64.2;STATE OF THE ART IN HIGH LEVEL LANGUAGE-BASED DRIVE CONTROL;500
6.64.3;SPECIFICATION OF THE DIGITALDRIVE CONTROLLER;501
6.64.4;USER PROGRAMMING OF DIGITA LDRIVE CONTROLLERS;502
6.64.5;HARDWARE AND SOFTWARE REQUIREMENTS FOR REALTIME EXECUTION OF THE HIGH LEVEL LANGUAGE;503
6.64.6;EXPERIMENTAL RESULTS;504
6.64.7;ACKNOWLEDGEMENTS;504
6.64.8;REFERENCES;505
6.65;CHAPTER 63. PROGRAMMABLE PROCESSOR FOR THE CONTROL OF POWER ELECTRONIC SYSTEMS;508
6.65.1;1. INTRODUCTION;508
6.65.2;2. STRUCTURE AND OPERATION OF THE PHSC;509
6.65.3;3. LANGUAGE, SEQUENCE CONTROL AND PROCESSING SPEED OF THE USER PROGRAM;510
6.65.4;4. APPLICATION AS CONTROLLER FOR CYCL0C0NVERTER-FED SYNCHRONOUS MOTORS;512
6.65.5;REFERENCES;513
6.66;CHAPTER 64. DIGITAL SPEED CONTROL SYSTEM WITH INTEGRAL-PROPORTIONAL CONTROL;516
6.66.1;INTRODUCTION;516
6.66.2;THEORETICAL INVESTIGATIONS;516
6.66.3;DESCRIPTION OF THE SYSTEM;517
6.66.4;EXPERIMENTAL INVESTIGATIONS;519
6.66.5;CONCLUSIONS;521
6.66.6;ACKNOWLEDGEMENTS;521
6.66.7;REFERENCES;521
6.67;CHAPTER 65. AUTOMATIC SELECTION OF CONTROL ALGORITHMS FOR AN ELECTRICAL DRIVE WITH MICROCOMPUTER-BASED SPEED CONTROL;522
6.67.1;1. INTRODUCTION;522
6.67.2;2. SYSTEM DESIGN CONSIDERATIONS AND CONTROL STRATEGY;522
6.67.3;3. OPTIMAL PARAMETERS FOR THESELECTED CONTROL ALGORITHMS;524
6.67.4;4. CONDITIONS FOR CHANGING OVER OF CONTROL ALGORITHMS;525
6.67.5;5. EXPERIMENTAL RESULTS;525
6.67.6;6. CONCLUSIONS;526
6.67.7;7. REFERENCES;526
6.68;CHAPTER 66. CONTROL OF ARMATURE AND FIELD CURRENTOF A CHOPPER-FED-DC-DRIVE BY A SINGLE CHIP MICROCOMPUTER;530
6.68.1;INTRODUCTION;530
6.68.2;CONTROL PRINCIPLES;531
6.68.3;MICROCOMPUTER HARDWARE;532
6.68.4;INTERRUPT PROGRAMS;533
6.68.5;BACKGROUND PROGRAM;535
6.68.6;EXPERIMENTAL RESULTS;536
6.68.7;CONCLUSIONS;537
6.68.8;REFERENCES;537
6.69;CHAPTER 67. MICROPROCESSOR-BASED SUBOPTIMAL CONTROL OF CONVERTER-FED HYPO-HYPERSYNCHRONOU SCASCADE DRIVES;538
6.69.1;LIST OF SYMBOLS;538
6.69.2;INTRODUCTION;538
6.69.3;APPROXIMATE MATHEMATICAL MODEL OF THE DRIVE;539
6.69.4;SUBOPTIMAL CONTROL LAW;540
6.69.5;CONCLUSIONS;543
6.69.6;APPENDIX 1;543
6.69.7;APPENDIX 2;543
6.69.8;REFERENCES;545
6.70;CHAPTER 68. A MICROCOMPUTER-BASED CONTROL SYSTEM FOR AN INVERTER SUPPLYING STATE FEEDBACK CONTROLLED INDUCTION MOTORS;546
6.70.1;INTRODUCTION;546
6.70.2;MODULATION TECHNIQUE;547
6.70.3;IMPLEMENTATION OF THE MODULATION TECHNIQUE;549
6.70.4;REMARKS ABOUT THE OBTAINED RESULTS;551
6.70.5;CONCLUSIONS;552
6.70.6;REFERENCES;552
6.71;CHAPTER 69. CURRENT REFERENCE ESTIMATOR FOR INVERTER-FED AC MACHINES;554
6.71.1;INTRODUCTION;554
6.71.2;CURRENT-TORQUE RELATIONSHIP;554
6.71.3;THE COMPUTING RESULTS;557
6.71.4;THE CURRENT REFERENCE ESTIMATORS;557
6.71.5;THE EXPERIMENTAL RESULTS;558
6.71.6;CONCLUSIONS;558
6.71.7;REFERENCE;558
6.72;CHAPTER 70. POSITION CONTROL WITH POWER INDUCTION MOTORS;562
6.72.1;INTRODUCTION;562
6.72.2;CONTROL SYSTEM CONFIGURATION;562
6.72.3;CONTROL SYSTEM PERFORMANCES;563
6.72.4;POWER AMPLIFIER;564
6.72.5;HARDWARE OF THE CONTROL SYSTEM;564
6.72.6;SOFTWARE;564
6.72.7;PRACTICAL RESULTS;565
6.72.8;REFERENCES;565
6.73;CHAPTER 71. TIME OPTIMAL 3-DIMENSIONAL TRAJECTORY CONTROL;568
6.73.1;INTRODUCTION;568
6.73.2;TECHNICAL IMPLEMENTATION OF THE TRAJECTORY CONTROL WITH A 3-DIMENSIONAL MODEL SYSTEM;569
6.73.3;METHOD TO SOLVE THE OPTIMIZATION PROBLEM;569
6.73.4;MODEL CONSTITUTION;569
6.73.5;COMPUTER PROGRAMME;570
6.73.6;SIMULATION OF THE FEED DRIVESOF A MACHINE TOOL WITH TIME OPTIMAL TRAJECTORY CONTROL ON A DIGITAL COMPUTER;570
6.73.7;COMPARISON OF THE DEVIATIONS OF TRAJECTORY BETWEEN TIME OPTIMAL AND AS USUAL CONCEPTED TRAJECTORY CONTROL;570
6.73.8;CONCLUSION;571
6.73.9;REFERENCES;571
6.74;CHAPTER 72. THREE-LEVEL MULTI VARIABLE PHASE LOCKED LOOP DRIVES SPECIALLY SUITABLE FOR NUMERICAL CONTROL OF MACHINE TOOLS;576
6.74.1;INTRODUCTION;576
6.74.2;THE PLL CIRCUIT;576
6.74.3;TRANSIENT BEHAVIOR;577
6.74.4;REFERENCES;579
6.75;CHAPTER 73. NON-DEADBAND REVERSING CONTROL OF LINEAR INDUCTION MOTOR;584
6.75.1;INTRODUCTION;584
6.75.2;THE LINEAR INDUCTION MOTOR (LIM);584
6.75.3;ADJUSTING PRIMARY VOLTAGE WITH THYRISTOR AC PHASE-CONTROLLER;585
6.75.4;NON-DE ADBAND REVERSING CCNTR0L;586
6.75.5;CONCLUSIONS;587
6.75.6;REFERENCES;587
6.76;CHAPTER 74. CONTROL POLICIES FOR MAGLEV VEHICLES EMPLOYING SYNCHRONOUS LONG STATOR DRIVES;592
6.76.1;INTRODUCTION;592
6.76.2;SYSTEM ARRANGEMENT;592
6.76.3;CONTROL SYSTEM;593
6.76.4;EXPERIMENTAL TEST;597
6.76.5;REFERENCES;598
6.77;CHAPTER 75. TRAM MICROCOMPUTER CONTROL;600
6.77.1;INTRODUCTION;600
6.77.2;CAR MOTION PARAMETERS DETERMINATION;601
6.77.3;CONTROL ALGORITHMS;601
6.77.4;OPERATION OF THE SYSTEM;602
6.77.5;STRUCTURE OF THE SYSTEM;602
6.77.6;CONCLUSION;603
6.77.7;REFERENCES;603
6.78;CHAPTER 76. ELECTRIC GROUND TRANSPORTATION - URBAN AUTOMATIC TAXI AXAR WITHOUT ACOMPUTER - VEHICLES MANAGEMENT -DEMANDS VALUATION - MINIMIZATION OF EMPTY VEHICLES TRAFFIC;604
6.78.1;INTRODUCTION;604
6.78.2;FUNCTIONING PRINCIPLES OF THE AUTOMATIC URBAN TAXI AXAR;604
6.78.3;CONSTITUTION OF A THIRD STRUCTURE NETWORK;605
6.78.4;LENGTH OF STATIONS - MAXIMUM NETWORK CAPACITY;605
6.78.5;LAYOUT OF THE NETWORK IN THE TOWN - FLOW EVALUATION;606
6.78.6;VEHICLE DISTRIBUTION ON THE NETWORK;606
6.78.7;FUNCTIONING SIMULATION;606
6.78.8;REFERENCES;607
6.79;CHAPTER 78. REDUCTION OF LOSSES AND VOLUME OF A DRIVESYSTEM WITH CURRENT FED SYNCHRONOUS MACHINE BY USE OF A FAST SWITCHING TRANSISTOR CHOPPER AS INPUT CONVERTER;610
6.79.1;INTRODUCTION;610
6.79.2;ASSUMPTIONS;610
6.79.3;SWITCHING OFF THE CHOPPER;612
6.79.4;FILTER DESIGN;612
6.79.5;RESULTS;613
6.79.6;CONCLUSION;615
6.79.7;REFERENCES;615
6.79.8;APPENDIX;616
6.80;CHAPTER 79. A NEW CONTROL METHOD FOR AC DRIVES WITH INVERTER-FED SYNCHRONOUS MACHINES SUPPLIED FROM A BATTERY;618
6.80.1;INTRODUCTION;618
6.80.2;ANALYSIS OF THE CONVENTIONAL CONTROL;618
6.80.3;ANALYSIS OF THE CONTROL BY MEANS OF THE INVERTER;620
6.80.4;STATIONARY PERFORMANCE OF THE DRIVE;620
6.80.5;INFLUENCE OF DRIVE PARAMETERS;622
6.80.6;EFFICIENCY OF THE DRIVE;622
6.80.7;DYNAMIC PERFORMANCE;623
6.80.8;CONCLUSION;623
6.80.9;REFERENCES;623
6.80.10;APPENDIX;624
6.81;CHAPTER 80. A MICROPROCESSOR CONTROLLED DC TRACTION DRIVE FOR ELECTRIC/HYBRID VEHICLES;626
6.81.1;INTRODUCTION;626
6.81.2;THE ESTABLISHMENT OF THE OPERATIONAL STRATEGY;627
6.81.3;DESCRIPTION OF PROPULSION CONTROL SYSTEM;629
6.81.4;EXPERIMENTAL EVALUATION;630
6.81.5;CONCLUSION;630
6.81.6;REFERENCES;630
6.81.7;APPENDIX 1;632
6.82;CHAPTER 81. THE TWO-STAGE, TWO-QUADRANT CONTROLLER- A PWM RECTIFIER;634
6.82.1;INTRODUCTION;634
6.82.2;THE PWM RECTIFIER CONNECTED TO THE D.C. VOLTAGE LINK;635
6.82.3;PWM RECTIFIER CONNECTIONS;636
6.82.4;PRINCIPLE OF THE TWO-STAGE PWM RECTIFIER;637
6.82.5;CONTROL SYSTEM OF THE PWM RECTIFIER;638
6.82.6;SIMULATION AND TEST SETUP;639
6.82.7;SUMMARY;640
6.82.8;ACKNOWLEDGEMENT;641
6.82.9;LITERATURE;641
6.83;CHAPTER 82. SUPPRESSION OF NARROW-BAND HARMONICS IN THE INPUT CURRENT OF TRACTION VEHICLES;642
6.83.1;INTRODUCTION;642
6.83.2;EFFECT OF THE INPUT CONVERTER WITH D.C.INPUT;643
6.83.3;BEHAVIOUR OF THE NOISE CURRENT CONTROL CIRCUIT WITH D.C. INPUT;644
6.83.4;EFFECT OF THE INPUT CONVERTER WITH SINGLE-PHASE A.C. SUPPLY;646
6.83.5;BEHAVIOUR OF THE NOISE CURRENT CONTROL CIRCUIT WlTH SINGLE-PHASE A.C. INPUT;647
6.83.6;PROSPECTS;649
6.83.7;REFERENCES;649
6.84;CHAPTER 83. ON-LINE OPTIMIZATION OF THE LINE-RESPONSE OF CONVERTER-FED AC-MOTOR DRIVES;650
6.84.1;INTRODUCTION;650
6.84.2;STRUCTURE OF THE CONTROL SYSTEM;651
6.84.3;APPLICATIONS OF THE CONTROL;652
6.84.4;OPTIMIZATION;653
6.84.5;CONCLUSIONS;656
6.84.6;REFERENCES;656
6.85;CHAPTER 84. CONTROL OF A CURRENT INVERTER-FED ASYNCHRONOUS MACHINE FOR RAILWAY TRACTION AND ALTERNATIVE MOTORS IN GENERAL;658
6.85.1;1 - INTRODUCTION;658
6.85.2;2 - STRATEGIES OF COMMAND OF A CURRENT INVERTER FED ASYNCHRONOUS MACHINE[1];658
6.85.3;3 - EXAMPLE OF APPLICATION! RAILWAY TRACTION;660
6.85.4;4 - PARALLELING SOME ASYNCHRONOUS MACHINES;660
6.85.5;5 - EXTENSION OF THE COMMAND TO SELFCONTROLLED SYNCHRONOUS MACHINE [3];661
6.85.6;6 - CONCLUSION;661
6.85.7;REFERENCES;662
6.86;CHAPTER 85. INFLUENCE OF A TIME DELAYED SPEED FEEDBACK ON AN INVERTER-FED SQUIRREL CAGE DRIVE;666
6.86.1;INTRODUCTION;666
6.86.2;SQUIRREL-CAGE MOTOR WITH STATOR CURRENT AND SLIP FREQUENCY CONTROL;667
6.86.3;DELAY ELEMENT IN THE SPEED FEEDBACK LOOP;667
6.86.4;PHASE LOCKED LOOP IN THE SPEED FEEDBACK LOOP;669
6.86.5;SIMULATION;672
6.86.6;PRACTICAL EXPERIENCE;673
6.86.7;REFERENCES;674
6.87;CHAPTER 86. CONTROL OF A SOLAR ENERGY SUPPLY SYSTEM BY A MICROCOMPUTER;676
6.87.1;INTRODUCTION;676
6.87.2;SYSTEM STRUCTURE;677
6.87.3;SIMPLE STRUCTURE;677
6.87.4;INSULAR SUPPLY SYSTEM WITHOUT CENTRAL CONTROL;677
6.87.5;INSULAR SUPPLY SYSTEM WITH CENTRAL CONTROL;678
6.87.6;INSULAR SUPPLY SYSTEM WITHOUT INTERMEDIATE CIRCUIT;678
6.87.7;CONTROL METHODS;678
6.87.8;EXCESS OF POWER;680
6.87.9;LACK OF POWER;680
6.87.10;THE REALIZED SYSTEM;681
6.87.11;CONCLUSION;682
6.88;CHAPTER 87. MAXIMUM POWER CONTROL CIRCUIT A FOR SOLAR CONVERTER;684
6.88.1;INTRODUCTION;684
6.88.2;GENERAL DESCRIPTION;685
6.88.3;RESULTS;687
6.88.4;CONCLUSIONS;689
6.88.5;ACKNOWLEDGMENTS;690
6.88.6;REFERENCES;690
6.89;CHAPTER 88. TRANSIENT PROCESSES IN SINGLE-PHASE INVERTERS FOR USE IN PHOTOVOLTAIC POWER SYSTEMS;692
6.89.1;Introduction;692
6.89.2;2. SCA Output Characteristic;692
6.89.3;3. Discontinuous mode of the current id;693
6.89.4;4. Continuous mode of the current id;693
6.89.5;5. Conclusions;695
6.89.6;Acknowledgement;695
6.89.7;References;695
6.90;CHAPTER 89. HARMONIC CURRENTS COMPENSATION SCHEME FOR ELECTRICAL DISTRIBUTION SYSTEMS;698
6.90.1;INTRODUCTION;698
6.90.2;PRINCIPLE OF HARMONIC CURRENTS COMPENSATOR SCHEME;698
6.90.3;SIMULATION STUDY OF A SINGLE PHASE HARMONIC CURRENTS COMPENSATOR;700
6.90.4;CONCLUSIONS;702
6.90.5;REFERENCES;702
6.91;CHAPTER 90. ON UNINTERRUPTIBLE DC POWER SUPPLY SYSTEMS;706
6.91.1;INTRODUCTION;706
6.91.2;SYSTEMS WITH A REDUNDANT NUMBER OF PARALLELED SOURCES;706
6.91.3;ANALYSIS OF THE CONFIGURATION WITH FEEDBACK-CONTROLLED LOAD SHARING;709
6.91.4;CONCLUSIONS;711
6.91.5;ACKNOWLEDGEMENT;711
6.91.6;REFERENCES;711
6.92;CHAPTER 91. DECENTRALIZED CONTROL OF MULTITERMINAL HVDC SYSTEM EMBEDDED IN AC NETWORKS1;712
6.92.1;INTRODUCTION;712
6.92.2;DECENTRALIZED CONTROL SYSTEM DESIGN;714
6.92.3;ROBUSTNES;716
6.92.4;NUMERICAL EXAMPLE: FIVE TERMINAL MTDC SYSTEM DESIGN;716
6.92.5;CONCLUSION;718
6.92.6;REFERENCES;718
6.93;CHAPTER 92. APPLICATION OF STATIC VAR COMPENSATORS AND HVDC CONVERTERS FOR DAMPING SUBSYNCHRONOUS OSCILLATIONS IN POWER SYSTEMS;720
6.93.1;INTRODUCTION;720
6.93.2;SYSTEM MODELLING;721
6.93.3;HVDC SYSTEM MODEL;722
6.93.4;CHARACTERISTICS OF STUDIED SYSTEM;722
6.93.5;CONTROL STRATEGY;723
6.93.6;STABILIZATION BY SVC;724
6.93.7;HVDC SUPPLEMENTARY CONTROLS;725
6.93.8;CONCLUSION;726
6.93.9;REFERENCES;726
6.93.10;APPENDIX I;726
6.94;CHAPTER 92. CONTROL OF STATIC PHASE SHIFTING TRANSFORMERS WITH LEAKAGE REACTANCE;728
6.94.1;INTRODUCTION;728
6.94.2;INSERTED INDUCTANCE;729
6.94.3;POWER FLOW;731
6.94.4;EFFECT ON CONTROL;731
6.94.5;CONCLUSION;732
6.94.6;REFERENCES;732
6.95;CHAPTER 93. CONTROLLER DESIGNS FOR POWER SYSTEM STABILITY ENHANCEMENT USING STATIC PHASE SHIFTERS;736
6.95.1;INTRODUCTION;736
6.95.2;POWER SYSTEM MODEL;736
6.95.3;CONTROL SCHEMES;739
6.95.4;CONCLUSION;741
6.95.5;APPENDIX;741
6.96;CHAPTER 94. PHASE CONTROL AND THREE-PHASE HARMONIC CALCULATIONS FOR THYRISTOR CONTROLLED REACTOR COMPENSATORS;744
6.96.1;INTRODUCTION;744
6.96.2;LINE CURRENT WAVEFORM;745
6.96.3;HARMONIC CALCULATIONS;746
6.96.4;DELAY ANGLES: CONTROL AND EVALUATION;746
6.96.5;DISCUSSION;748
6.96.6;CONCLUSIONS;749
6.96.7;REFERENCES;749
6.97;CHAPTER 95. STEADY STATE BEHAVIOR OF CONVERTER FED SYSTEMS;750
6.97.1;INTRODUCTION;750
6.97.2;MATHEMATICAL MODEL OF A CONVERTER FED SYSTEM;751
6.97.3;PROCEDURE FOR THE SOLUTION OF THE CONVERTERFED SYSTEM MODEL;752
6.97.4;DIRECT COMPUTATION OFT HE STEADY STATE BEVIOR;754
6.97.5;DIRECT COMPUTATION OF THE STATIC CHARACTERISTIC;755
6.97.6;CONTROL STRATEGY OF A CURRENT IMPRESSED AC/DC CONVERTER;757
6.97.7;STATIC CHARACTERISTICS OF A PWM INDUCTION MOTOR DRIVE;764
6.97.8;APPENDIX;769
6.98;CHAPTER 96 STATE OF THE ART ON POWER ELECTRONICS AND ELECTRICAL DRIVES IN JAPAN;772
6.98.1;INTRODUCTION;772
6.98.2;TECHNICAL PAPERS PRESENTED AND PUBLISHED IN JAPAN;772
6.98.3;POWER SEMICONDUCTOR DEVICES;773
6.98.4;POWER CONVERTERS;773
6.98.5;VARIABLE SPEED DRIVE;774
6.98.6;MICROPROCESSOR-BASED CONTROLLER;774
6.98.7;APPLICATION OF MODERN CONTROL THEORY;775
6.98.8;COMMENT ON TECHNICAL INFORMATION FLOW;775
6.98.9;CONCLUSION;776
6.98.10;REFERENCES;776
6.99;CHAPTER 97. CONTROL OF AC-MACHINES WITH THE HELP OF MICROELECTRONICS;784
6.99.1;INTRODUCTION;784
6.99.2;1. MATHEMATICAL MODEL OF A SYMMETRICAL AC-MACHINE;784
6.99.3;2. SYNCHRONOUS AC-SERVO MOTOR WITH PERMANENT MAGNET EXCITATION AND IMPRESSED SINUSOIDAL STATOR CURRENTS;786
6.99.4;3. INDUCTION MOTOR WITH IMPRESSED STATOR CURRENTS;789
6.99.5;4. INDUCTION MOTOR FED BY A VOLTAGE SOURCE THYRISTOR INVERTER;795
6.99.6;5. CONVERTER-FED SYNCHRONOUS MOTOR WITH FIELD AND DAMPER WINDINGS;798
6.99.7;6. DOUBLE-FED AC-MACHINE WITH IMPRESSED ROTOR CURRENTS;801
6.99.8;CONCLUSION;802
6.99.9;REFERENCES;804
6.100;CHAPTER 98. ROAD TRANSPORTATION WITH ELECTRIC VEHICLES;808
6.100.1;INTRODUCTION;808
6.100.2;WHY ELECTRIC VEHICLES ?;808
6.100.3;THE PERSPECTIVES AND GOALS OF THE ELECTRIC VEHICLE INDUSTRY;816
6.100.4;ELECTRIC VEHICLE TECHNOLOGY;821
6.100.5;CONCLUSION.;826
6.100.6;REFERENCES;826
7;AUTHOR INDEX;828




