E-Book, Deutsch, 467 Seiten, eBook
Zurmühl Matrizen
2. Auflage 1958
ISBN: 978-3-642-53291-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Eine Darstellung für Ingenieure
E-Book, Deutsch, 467 Seiten, eBook
ISBN: 978-3-642-53291-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
I. Kapitel. Der Matrizenkalkül.- § 1. Grundbegriffe und einfache Rechenregeln.- § 2. Das Matrizenprodukt.- § 3. Die Kehrmatrix.- § 4. Komplexe Matrizen.- § 5. Lineare Abbildungen und Koordinatentransformationen.- II. Kapitel. Lineare Gleichungen.- § 6. Der Gausssche Algorithmus.- § 7. Lineare Abhängigkeit und Rang.- § 8. Allgemeine lineare Gleichungssysteme.- § 9. Orthogonalsysteme.- § 10. Polynommatrizen und ganzzahlige Matrizen.- III. Kapitel. Quadratische Formen nebst Anwendungen.- § 11. Quadratische Formen.- § 12. Einige Anwendungen des Matrizenkalküls.- IV. Kapitel. Das Eigenwertproblem.- § 13. Eigenwerte und Eigenvektoren.- 13.1. Problemstellung und Begriffe.- 13.2. Die Eigenvektoren.- 13.3. Beispiele.- 13.4. Ähnlichkeitstransformation. Invarianten.- 13.5. Matrizenpotenzen. Matrizenprodukte.- 13.6. Die allgemeine Eigenwertaufgabe.- § 14. Diagonalähnliche Matrizen.- § 15. Symmetrische Matrizen.- § 16. Normale Matrizen. Die Matrix A’A, A. Abschätzungen.- § 17. Eigenwerte spezieller Matrizen.- V. Kapitel. Struktur der Matrix.- § 18. Minimumgleichung, Charakteristik und Klassifikation.- § 19. Die Normalform. Hauptvektoren und Hauptvektorketten.- § 20. Matrizenfunktionen und Matrizengleichungen.- VI. Kapitel. Numerische Verfahren.- § 21. Eigenwertaufgabe: Iterative Verfahren.- § 22. Eigenwertaufgabe: Direkte Verfahren.- § 23. Iterative Behandlung linearer Gleichungssysteme.- VII. Kapitel. Anwendungen.- § 24. Matrizen in der Elektrotechnik.- § 25. Anwendungen in der Statik.- § 26. Übertragungsmatrizen zur Behandlung elastomechanischer Aufgaben.- § 27. Matrizen in der Schwingungstechnik.- § 28. Systeme linearer Differentialgleichungen.