Buch, Englisch, 634 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1369 g
Reihe: Chapman & Hall/CRC Handbooks of Modern Statistical Methods
Buch, Englisch, 634 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 1369 g
Reihe: Chapman & Hall/CRC Handbooks of Modern Statistical Methods
ISBN: 978-0-367-60952-8
Verlag: Chapman and Hall/CRC
When used alone, matching and weighting do not use outcome information, so they are part of the design of an observational study. When used in conjunction with models for the outcome, matching and weighting may enhance the robustness of model-based adjustments. The book is for researchers in medicine, economics, public health, psychology, epidemiology, public program evaluation, and statistics who examine evidence of the effects on human beings of treatments, policies or exposures.
Zielgruppe
Postgraduate and Professional
Autoren/Hrsg.
Weitere Infos & Material
Part 1: Conceptual issues 1. Overview of methods for adjustment and applications in the social and behavioral sciences: The role of study design 2. Propensity score 3. Generalization and Transportability Part 2: Matching 4. Optimization techniques in multivariate matching 5. Optimal Full matching 6. Fine balance and its variations in modern optimal matching 7. Matching with instrumental variables 8. Covariate Adjustment in Regression Discontinuity Designs 9. Risk Set Matching 10. Matching with Multilevel Data 11. Effect Modification in Observational Studies 12. Optimal Nonbipartite Matching 13. Matching Methods for Large Observational Studies Part 3: Weighting 14. Overlap Weighting 15. Covariate Balancing Propensity Score 16. Balancing Weights for Causal Inference 17. Assessing Principal Causal Effects Using Principal Score Methods 18. Incremental Causal Effects: An Introduction and Review 19. Weighting Estimators for Causal Mediation Part 4: Machine Learning Adjustments 20. Machine Learning for Causal Inference 21. Treatment Heterogeneity with Survival Outcomes 22. Why Machine Learning Cannot Ignore Maximum Likelihood Estimation 23. Bayesian Propensity Score methods and Related Approaches for Confounding Adjustment Part 5: Beyond Adjustments 24. How to Be a Good Critic of an Observational Study 25. Sensitivity Analysis 26. Evidence Factors