E-Book, Englisch, 257 Seiten, eBook
Zreiqat / Dunstan / Rosen A Tissue Regeneration Approach to Bone and Cartilage Repair
1. Auflage 2014
ISBN: 978-3-319-13266-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 257 Seiten, eBook
Reihe: Mechanical Engineering Series
ISBN: 978-3-319-13266-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Ligand–Receptor Interactions and Their Implications in Delivering Certain Signaling for Bone Regeneration;8
2.1;Abstract;8
2.2;1 Introduction;8
2.3;2 The Identification of BMPs as Members of the TGF-? Family;9
2.4;3 Experimental Models for Evaluating Bone Formation;10
2.5;4 Regulation of Ligand Modifications;11
2.6;5 Regulation of Receptor Activation;12
2.7;6 Regulation by Antagonists;13
2.8;7 Regulation of Intracellular Signaling Effectors;15
2.9;8 Cross-Talk with Other Signaling Molecules;17
2.10;9 Conclusions;19
2.11;References;19
3;BMPs and Wnts in Bone and Cartilage Regeneration;23
3.1;Abstract;23
3.2;1 BMP Signaling in Bone and Cartilage Regeneration;23
3.2.1;1.1 Bmp-2;24
3.2.2;1.2 Bmp-4;26
3.2.2.1;1.2.1 Cartilage Repair;26
3.2.2.2;1.2.2 Bone-Tendon-Muscle Interaction;26
3.2.3;1.3 Bmp-6;27
3.2.3.1;1.3.1 Cartilage Repair;27
3.2.3.2;1.3.2 Bone Regeneration;28
3.2.4;1.4 Bmp-7;28
3.2.4.1;1.4.1 Cartilage Repair and Arthritis;28
3.2.4.2;1.4.2 Meniscus Repair;29
3.2.4.3;1.4.3 Fracture and Spinal Fusion;29
3.2.5;1.5 Bmp-9;30
3.2.6;1.6 Cross-Talk Between BMP and Wnt Signaling;30
3.3;2 Wnt?-Catenin Signaling in Bone and Cartilage Regeneration;31
3.3.1;2.1 Scl-Ab;32
3.3.1.1;2.1.1 Scl-Ab in Ovariectomy-Induced Bone Loss;32
3.3.1.2;2.1.2 Scl-Ab in Bone Mechanical Strength;32
3.3.1.3;2.1.3 Scl-Ab in Bone Fracture Healing;33
3.3.1.4;2.1.4 Scl-Ab in Osteogenesis Imperfecta;33
3.3.1.5;2.1.5 Potential Side Effect;34
3.3.2;2.2 Dkk1-Ab;35
3.4;References;36
4;Osteocytes and Bone Regeneration;44
4.1;Abstract;44
4.2;1 Introduction;44
4.3;2 Bone Matrix Repair by Osteocytes;45
4.3.1;2.1 Osteocyte Apoptosis and Bone Matrix Microdamage;46
4.3.2;2.2 Mechanisms of Osteocyte Mediated Matrix Repair;47
4.3.2.1;2.2.1 RANKL Mediated Osteoclastogenesis;47
4.3.2.2;2.2.2 Osteocyte Induction of Angiogenesis;47
4.3.2.3;2.2.3 Osteocytic Osteolysis;48
4.3.2.4;2.2.4 Osteocyte Control of Bone Matrix Mineralisation;49
4.4;3 Osteocytes in Fracture;50
4.5;4 Osteocytes as Regulators of Bone Formation;51
4.6;5 Summary;53
4.7;References;53
5;Skeletal Stem Cells for Bone and Cartilage Tissue Regeneration;58
5.1;Abstract;58
5.2;1 Bone Marrow Microenvironment and Bone Marrow Stem Cells;59
5.3;2 MSCs: Road to Clinical Use;60
5.3.1;2.1 MSC Homing to Injured Tissues;60
5.4;3 Specific Uses of BMSCs in Skeletal Regeneration;62
5.4.1;3.1 Fractures and Bone Defects;62
5.4.2;3.2 Osteoporosis;63
5.4.3;3.3 Cartilage Repair and Rheumatic Diseases;63
5.5;4 Concluding Remarks;64
5.6;References;65
6;Manipulation of Macrophages to Enhance Bone Repair and Regeneration;69
6.1;Abstract;69
6.2;1 Introduction;69
6.3;2 Role of Inflammation in Bone Healing;70
6.4;3 Impact of Chronic Inflammation on Bone Healing;72
6.5;4 Macrophage Polarization as a Potential Therapeutic Strategy;74
6.6;5 Strategies to Actively Manipulate Macrophage Behavior;76
6.6.1;5.1 Cell Delivery;77
6.6.2;5.2 Drug and Protein Delivery;78
6.6.3;5.3 Physical Modification of Scaffold Properties;79
6.6.4;5.4 Selectively Delivery to Macrophages Using Nanoparticles;80
6.7;6 Conclusions;81
6.8;References;82
7;Cartilage Regeneration Using Induced Pluripotent Stem Cell Technologies;89
7.1;Abstract;89
7.2;1 The Structure and Limited Repair Capacity of Cartilage;89
7.3;2 Cell Transplantation into Articular Cartilage Defects;91
7.4;3 The Use of iPSC-Derived Chondrocytes;92
7.4.1;3.1 Generation of iPSCs;92
7.4.2;3.2 Improvement of the Safety of iPSCs;94
7.4.3;3.3 Transplantation of iPSC-Derived Chondrocytes into Articular Cartilage Defects of Patients;94
7.4.4;3.4 Development of an iPSC Library;96
7.5;4 Use of Chondrogenic Cells Generated by Direct Conversion;96
7.5.1;4.1 Cell-Type Conversion Without the Need for iPS Cells;96
7.5.2;4.2 Direct Conversion of Dermal Fibroblasts into Chondrogenic Cells;97
7.6;5 Conclusions;98
7.7;References;99
8;Alveolar Augmentation: Focus on Growth Factors (BMPs);103
8.1;Abstract;103
8.2;1 Introduction;104
8.3;2 Alveolar Augmentation;106
8.4;3 Clinical Modeling;109
8.5;4 Alternative Carrier Technologies;110
8.6;5 rhBMP-2 Coated Dental Implants;112
8.7;6 Alveolar Augmentation in Clinical Settings;114
8.8;References;118
9;Bone-Biomimetic Biomaterial and Cell Fate Determination;123
9.1;Abstract;123
9.2;1 Introduction;124
9.3;2 Biomaterial Design for Bone Regeneration;125
9.3.1;2.1 Designs to Mimic Physical Characteristics of Bone;125
9.3.1.1;2.1.1 Designs to Mimic Architecture of Bone;125
9.3.1.2;2.1.2 Designs to Mimic Topography of Bone;126
9.3.1.3;2.1.3 Designs to Mimic Mechanical Properties of Bone;127
9.3.2;2.2 Designs to Mimic Chemical Composition of Bone;129
9.3.2.1;2.2.1 Designs to Mimic Organic Phase of Bone;129
9.3.2.2;2.2.2 Designs to Mimic Mineral Phase of Bone;131
9.4;3 Mechanisms of Cell Fate Determination by Bone-Biomimetic Biomaterial;132
9.4.1;3.1 Protein Adsorption;133
9.4.2;3.2 Integrin Signalling;134
9.4.2.1;3.2.1 Integrin Downstream Signalling Pathways;136
9.4.2.1.1;ERKMAPK Signalling Pathway;136
9.4.2.1.2;RhoROCK Signalling Pathway;137
9.4.2.1.3;PI3K-Akt Signalling Pathway;138
9.4.2.2;3.2.2 Crosstalk Between Integrin and Growth Factor Signalling;139
9.5;4 Summary, Conclusion and Perspectives;139
9.6;References;140
10;Biomimetic Scaffolds for Craniofacial Bone Tissue Engineering: Understanding the Role of the Periosteum in Regeneration;151
10.1;Abstract;151
10.2;1 Introduction;152
10.3;2 The Role of the Periosteum in Bone Development and Regeneration;154
10.3.1;2.1 Periosteal Involvement in Wound Healing Initiation;154
10.3.2;2.2 BMP Signaling;154
10.3.3;2.3 Hedgehog Signaling;155
10.3.4;2.4 Wnt Signaling;156
10.3.5;2.5 Periosteal Cell Recruitment and Function;156
10.3.6;2.6 Vascularization and Extracellular Environment;156
10.4;3 Tissue Engineered Electrospun Hydroxyapatite Containing Chitosan Scaffolds;157
10.4.1;3.1 Key Features of Tissue Engineered Bone Scaffolds;157
10.4.2;3.2 Electrospinning and Scaffold Fabrication;158
10.4.3;3.3 HA Containing Chitosan Scaffolds are Osteoinductive;160
10.4.4;3.4 HA Containing Chitosan Scaffolds are OsseointegrativeOsteoconductive;161
10.4.5;3.5 Conclusions;164
10.5;References;165
11;Biomaterials Used for Maxillofacial Regeneration;170
11.1;Abstract;170
11.2;1 Introduction;170
11.3;2 Current Clinical Treatments for Maxillofacial Bone Regeneration;171
11.3.1;2.1 Bone Grafting;171
11.3.1.1;2.1.1 Autografts;171
11.3.1.2;2.1.2 Allografts;172
11.3.1.3;2.1.3 Xenografts;173
11.3.2;2.2 Distraction Osteogenesis;173
11.3.3;2.3 Guided Bone Regeneration;174
11.4;3 The Biomaterials Used for Maxillofacial Bone Regeneration;174
11.4.1;3.1 Biomaterials Clinically Used for Maxillofacial Regeneration;174
11.4.2;3.2 Recent Advances in Biomaterials Used for Maxillofacial Regeneration;176
11.4.2.1;3.2.1 Structural Design;177
11.4.2.1.1;Nanotechnology;177
11.4.2.1.2;CADCAM Technique;180
11.4.2.2;3.2.2 Bioinorganics;182
11.4.2.2.1;Magnesium;182
11.4.2.2.2;Strontium;182
11.4.2.2.3;Zinc;183
11.4.2.2.4;Copper;184
11.4.2.2.5;Lithium;184
11.4.2.3;3.2.3 Angiogenesis;185
11.5;4 Summary and Future Directions;186
11.6;References;187
12;Advances and Applications of Nanomechanical Tools in Cartilage Tissue Engineering;194
12.1;Abstract;194
12.2;1 Introduction;195
12.3;2 Heterogeneity of Native Cartilage at a Hierarchy of Length Scales;197
12.4;3 Current Advances in Nanomechanical Methods;199
12.4.1;3.1 AFM-Based Nanoindentation;199
12.4.2;3.2 AFM-Based Force Spectroscopy and Imaging;202
12.4.3;3.3 Other Nanomechanical Techniques;203
12.4.4;3.4 Multiscale Modeling;203
12.5;4 Applications of Nanomechanics to Cartilage Tissue Engineering;204
12.5.1;4.1 Effects of Cytokines on Chondrocyte Synthesis;204
12.5.2;4.2 Effects of Mechanical Loading on Chondrocyte Synthesis;206
12.5.3;4.3 Engineered Aggrecan by Bone Marrow Stromal Cells;207
12.5.4;4.4 Engineered Tissue by Induced Pluripotent Stem Cells;210
12.5.5;4.5 Chondrogenesis Differentiation of Adipose-Derived Stem Cells;211
12.6;5 Summary and Future Outlook;212
12.7;References;213
13;Signalling Pathways in Osteochondral Defect Regeneration;222
13.1;Abstract;222
13.2;1 Introduction;222
13.3;2 Definition of the Osteochondral Unit and Osteochondral Defects;223
13.4;3 Principles of Tissue Regeneration in Osteochondral Defects;225
13.4.1;3.1 Cartilage Regeneration in Osteochondral Defects;225
13.4.2;3.2 Bone Regeneration in Osteochondral Defects;227
13.4.3;3.3 Interplay Between Cartilage and Bone Regeneration in Osteochondral Defects;227
13.5;4 Conclusions;228
13.6;References;229
14;Polymer-Assisted Cartilage and Tendon Repair;232
14.1;Abstract;232
14.2;Abbreviation List;233
14.3;1 Introduction;233
14.3.1;1.1 Unmet Medical Need;234
14.4;2 Articular Cartilage;235
14.5;3 Healing in Cartilage;236
14.6;4 Tendons and Healing Tendon;237
14.7;5 Reconstruction of Articular Cartilage and Tendon-to-Bone Interface;239
14.7.1;5.1 Articular Cartilage-to-Bone Interface;239
14.7.1.1;5.1.1 Fibrocartilaginous Enthesis;239
14.8;6 Cell Sources and Properties;240
14.9;7 Expansion of Chondrocytes and Tenocytes for TE;241
14.10;8 Polymers for Cartilage and Tendon TE;242
14.10.1;8.1 Natural Polymers;242
14.10.1.1;8.1.1 Collagen;242
14.10.1.2;8.1.2 Silk and Chitosan;243
14.10.1.3;8.1.3 Decellularized Extracellular Matrices;243
14.11;9 Synthetic Polymers;244
14.12;10 Polymer-Based Hydrogels for TE;245
14.12.1;10.1 Cartilage;245
14.12.2;10.2 Tendon;245
14.13;11 HybridBiphasic Scaffolds;246
14.13.1;11.1 Cartilage;246
14.13.2;11.2 Tendon;246
14.14;12 Tools to Optimize Culture Conditions for Cartilage and Tendon TE;246
14.14.1;12.1 Cell Numbers;246
14.14.2;12.2 Seeding Conditions;247
14.14.3;12.3 Growth Factors in TE;247
14.14.3.1;12.3.1 Growth Factors for Tendon TE;247
14.14.3.2;12.3.2 Growth Factors for Cartilage TE;248
14.15;13 Polymer Topology;248
14.16;14 Conclusion: Future Challenges;249
14.17;References;250