Zreiqat / Dunstan / Rosen | A Tissue Regeneration Approach to Bone and Cartilage Repair | E-Book | sack.de
E-Book

E-Book, Englisch, 257 Seiten, eBook

Reihe: Mechanical Engineering Series

Zreiqat / Dunstan / Rosen A Tissue Regeneration Approach to Bone and Cartilage Repair


1. Auflage 2014
ISBN: 978-3-319-13266-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 257 Seiten, eBook

Reihe: Mechanical Engineering Series

ISBN: 978-3-319-13266-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Reviewing exhaustively the current state of the art of tissue engineering strategies for regenerating bones and joints through the use of biomaterials, growth factors and stem cells, along with an investigation of the interactions between biomaterials, bone cells, growth factors and added stem cells and how together skeletal tissues can be optimised, this book serves to highlight the importance of biomaterials composition, surface topography, architectural and mechanical properties in providing support for tissue regeneration.Maximizing reader insights into the importance of the interplay of these attributes with bone cells (osteoblasts, osteocytes and osteoclasts) and cartilage cells (chondrocytes), this book also provides a detailed reference as to how key signalling pathways are activated. The contribution of growth factors to drive tissue regeneration and stem cell recruitment is discussed along with a review the potential and challenges of adult or embryonic mesenchymal stem cells to further enhance the formation of new bone and cartilage tissues. This book serves to demonstrate the interconnectedness of biomaterials, bone/cartilage cells, growth factors and stem cells in determining the regenerative process and thus the clinical outcome.
Zreiqat / Dunstan / Rosen A Tissue Regeneration Approach to Bone and Cartilage Repair jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Contents;6
2;Ligand–Receptor Interactions and Their Implications in Delivering Certain Signaling for Bone Regeneration;8
2.1;Abstract;8
2.2;1 Introduction;8
2.3;2 The Identification of BMPs as Members of the TGF-? Family;9
2.4;3 Experimental Models for Evaluating Bone Formation;10
2.5;4 Regulation of Ligand Modifications;11
2.6;5 Regulation of Receptor Activation;12
2.7;6 Regulation by Antagonists;13
2.8;7 Regulation of Intracellular Signaling Effectors;15
2.9;8 Cross-Talk with Other Signaling Molecules;17
2.10;9 Conclusions;19
2.11;References;19
3;BMPs and Wnts in Bone and Cartilage Regeneration;23
3.1;Abstract;23
3.2;1 BMP Signaling in Bone and Cartilage Regeneration;23
3.2.1;1.1 Bmp-2;24
3.2.2;1.2 Bmp-4;26
3.2.2.1;1.2.1 Cartilage Repair;26
3.2.2.2;1.2.2 Bone-Tendon-Muscle Interaction;26
3.2.3;1.3 Bmp-6;27
3.2.3.1;1.3.1 Cartilage Repair;27
3.2.3.2;1.3.2 Bone Regeneration;28
3.2.4;1.4 Bmp-7;28
3.2.4.1;1.4.1 Cartilage Repair and Arthritis;28
3.2.4.2;1.4.2 Meniscus Repair;29
3.2.4.3;1.4.3 Fracture and Spinal Fusion;29
3.2.5;1.5 Bmp-9;30
3.2.6;1.6 Cross-Talk Between BMP and Wnt Signaling;30
3.3;2 Wnt?-Catenin Signaling in Bone and Cartilage Regeneration;31
3.3.1;2.1 Scl-Ab;32
3.3.1.1;2.1.1 Scl-Ab in Ovariectomy-Induced Bone Loss;32
3.3.1.2;2.1.2 Scl-Ab in Bone Mechanical Strength;32
3.3.1.3;2.1.3 Scl-Ab in Bone Fracture Healing;33
3.3.1.4;2.1.4 Scl-Ab in Osteogenesis Imperfecta;33
3.3.1.5;2.1.5 Potential Side Effect;34
3.3.2;2.2 Dkk1-Ab;35
3.4;References;36
4;Osteocytes and Bone Regeneration;44
4.1;Abstract;44
4.2;1 Introduction;44
4.3;2 Bone Matrix Repair by Osteocytes;45
4.3.1;2.1 Osteocyte Apoptosis and Bone Matrix Microdamage;46
4.3.2;2.2 Mechanisms of Osteocyte Mediated Matrix Repair;47
4.3.2.1;2.2.1 RANKL Mediated Osteoclastogenesis;47
4.3.2.2;2.2.2 Osteocyte Induction of Angiogenesis;47
4.3.2.3;2.2.3 Osteocytic Osteolysis;48
4.3.2.4;2.2.4 Osteocyte Control of Bone Matrix Mineralisation;49
4.4;3 Osteocytes in Fracture;50
4.5;4 Osteocytes as Regulators of Bone Formation;51
4.6;5 Summary;53
4.7;References;53
5;Skeletal Stem Cells for Bone and Cartilage Tissue Regeneration;58
5.1;Abstract;58
5.2;1 Bone Marrow Microenvironment and Bone Marrow Stem Cells;59
5.3;2 MSCs: Road to Clinical Use;60
5.3.1;2.1 MSC Homing to Injured Tissues;60
5.4;3 Specific Uses of BMSCs in Skeletal Regeneration;62
5.4.1;3.1 Fractures and Bone Defects;62
5.4.2;3.2 Osteoporosis;63
5.4.3;3.3 Cartilage Repair and Rheumatic Diseases;63
5.5;4 Concluding Remarks;64
5.6;References;65
6;Manipulation of Macrophages to Enhance Bone Repair and Regeneration;69
6.1;Abstract;69
6.2;1 Introduction;69
6.3;2 Role of Inflammation in Bone Healing;70
6.4;3 Impact of Chronic Inflammation on Bone Healing;72
6.5;4 Macrophage Polarization as a Potential Therapeutic Strategy;74
6.6;5 Strategies to Actively Manipulate Macrophage Behavior;76
6.6.1;5.1 Cell Delivery;77
6.6.2;5.2 Drug and Protein Delivery;78
6.6.3;5.3 Physical Modification of Scaffold Properties;79
6.6.4;5.4 Selectively Delivery to Macrophages Using Nanoparticles;80
6.7;6 Conclusions;81
6.8;References;82
7;Cartilage Regeneration Using Induced Pluripotent Stem Cell Technologies;89
7.1;Abstract;89
7.2;1 The Structure and Limited Repair Capacity of Cartilage;89
7.3;2 Cell Transplantation into Articular Cartilage Defects;91
7.4;3 The Use of iPSC-Derived Chondrocytes;92
7.4.1;3.1 Generation of iPSCs;92
7.4.2;3.2 Improvement of the Safety of iPSCs;94
7.4.3;3.3 Transplantation of iPSC-Derived Chondrocytes into Articular Cartilage Defects of Patients;94
7.4.4;3.4 Development of an iPSC Library;96
7.5;4 Use of Chondrogenic Cells Generated by Direct Conversion;96
7.5.1;4.1 Cell-Type Conversion Without the Need for iPS Cells;96
7.5.2;4.2 Direct Conversion of Dermal Fibroblasts into Chondrogenic Cells;97
7.6;5 Conclusions;98
7.7;References;99
8;Alveolar Augmentation: Focus on Growth Factors (BMPs);103
8.1;Abstract;103
8.2;1 Introduction;104
8.3;2 Alveolar Augmentation;106
8.4;3 Clinical Modeling;109
8.5;4 Alternative Carrier Technologies;110
8.6;5 rhBMP-2 Coated Dental Implants;112
8.7;6 Alveolar Augmentation in Clinical Settings;114
8.8;References;118
9;Bone-Biomimetic Biomaterial and Cell Fate Determination;123
9.1;Abstract;123
9.2;1 Introduction;124
9.3;2 Biomaterial Design for Bone Regeneration;125
9.3.1;2.1 Designs to Mimic Physical Characteristics of Bone;125
9.3.1.1;2.1.1 Designs to Mimic Architecture of Bone;125
9.3.1.2;2.1.2 Designs to Mimic Topography of Bone;126
9.3.1.3;2.1.3 Designs to Mimic Mechanical Properties of Bone;127
9.3.2;2.2 Designs to Mimic Chemical Composition of Bone;129
9.3.2.1;2.2.1 Designs to Mimic Organic Phase of Bone;129
9.3.2.2;2.2.2 Designs to Mimic Mineral Phase of Bone;131
9.4;3 Mechanisms of Cell Fate Determination by Bone-Biomimetic Biomaterial;132
9.4.1;3.1 Protein Adsorption;133
9.4.2;3.2 Integrin Signalling;134
9.4.2.1;3.2.1 Integrin Downstream Signalling Pathways;136
9.4.2.1.1;ERKMAPK Signalling Pathway;136
9.4.2.1.2;RhoROCK Signalling Pathway;137
9.4.2.1.3;PI3K-Akt Signalling Pathway;138
9.4.2.2;3.2.2 Crosstalk Between Integrin and Growth Factor Signalling;139
9.5;4 Summary, Conclusion and Perspectives;139
9.6;References;140
10;Biomimetic Scaffolds for Craniofacial Bone Tissue Engineering: Understanding the Role of the Periosteum in Regeneration;151
10.1;Abstract;151
10.2;1 Introduction;152
10.3;2 The Role of the Periosteum in Bone Development and Regeneration;154
10.3.1;2.1 Periosteal Involvement in Wound Healing Initiation;154
10.3.2;2.2 BMP Signaling;154
10.3.3;2.3 Hedgehog Signaling;155
10.3.4;2.4 Wnt Signaling;156
10.3.5;2.5 Periosteal Cell Recruitment and Function;156
10.3.6;2.6 Vascularization and Extracellular Environment;156
10.4;3 Tissue Engineered Electrospun Hydroxyapatite Containing Chitosan Scaffolds;157
10.4.1;3.1 Key Features of Tissue Engineered Bone Scaffolds;157
10.4.2;3.2 Electrospinning and Scaffold Fabrication;158
10.4.3;3.3 HA Containing Chitosan Scaffolds are Osteoinductive;160
10.4.4;3.4 HA Containing Chitosan Scaffolds are OsseointegrativeOsteoconductive;161
10.4.5;3.5 Conclusions;164
10.5;References;165
11;Biomaterials Used for Maxillofacial Regeneration;170
11.1;Abstract;170
11.2;1 Introduction;170
11.3;2 Current Clinical Treatments for Maxillofacial Bone Regeneration;171
11.3.1;2.1 Bone Grafting;171
11.3.1.1;2.1.1 Autografts;171
11.3.1.2;2.1.2 Allografts;172
11.3.1.3;2.1.3 Xenografts;173
11.3.2;2.2 Distraction Osteogenesis;173
11.3.3;2.3 Guided Bone Regeneration;174
11.4;3 The Biomaterials Used for Maxillofacial Bone Regeneration;174
11.4.1;3.1 Biomaterials Clinically Used for Maxillofacial Regeneration;174
11.4.2;3.2 Recent Advances in Biomaterials Used for Maxillofacial Regeneration;176
11.4.2.1;3.2.1 Structural Design;177
11.4.2.1.1;Nanotechnology;177
11.4.2.1.2;CADCAM Technique;180
11.4.2.2;3.2.2 Bioinorganics;182
11.4.2.2.1;Magnesium;182
11.4.2.2.2;Strontium;182
11.4.2.2.3;Zinc;183
11.4.2.2.4;Copper;184
11.4.2.2.5;Lithium;184
11.4.2.3;3.2.3 Angiogenesis;185
11.5;4 Summary and Future Directions;186
11.6;References;187
12;Advances and Applications of Nanomechanical Tools in Cartilage Tissue Engineering;194
12.1;Abstract;194
12.2;1 Introduction;195
12.3;2 Heterogeneity of Native Cartilage at a Hierarchy of Length Scales;197
12.4;3 Current Advances in Nanomechanical Methods;199
12.4.1;3.1 AFM-Based Nanoindentation;199
12.4.2;3.2 AFM-Based Force Spectroscopy and Imaging;202
12.4.3;3.3 Other Nanomechanical Techniques;203
12.4.4;3.4 Multiscale Modeling;203
12.5;4 Applications of Nanomechanics to Cartilage Tissue Engineering;204
12.5.1;4.1 Effects of Cytokines on Chondrocyte Synthesis;204
12.5.2;4.2 Effects of Mechanical Loading on Chondrocyte Synthesis;206
12.5.3;4.3 Engineered Aggrecan by Bone Marrow Stromal Cells;207
12.5.4;4.4 Engineered Tissue by Induced Pluripotent Stem Cells;210
12.5.5;4.5 Chondrogenesis Differentiation of Adipose-Derived Stem Cells;211
12.6;5 Summary and Future Outlook;212
12.7;References;213
13;Signalling Pathways in Osteochondral Defect Regeneration;222
13.1;Abstract;222
13.2;1 Introduction;222
13.3;2 Definition of the Osteochondral Unit and Osteochondral Defects;223
13.4;3 Principles of Tissue Regeneration in Osteochondral Defects;225
13.4.1;3.1 Cartilage Regeneration in Osteochondral Defects;225
13.4.2;3.2 Bone Regeneration in Osteochondral Defects;227
13.4.3;3.3 Interplay Between Cartilage and Bone Regeneration in Osteochondral Defects;227
13.5;4 Conclusions;228
13.6;References;229
14;Polymer-Assisted Cartilage and Tendon Repair;232
14.1;Abstract;232
14.2;Abbreviation List;233
14.3;1 Introduction;233
14.3.1;1.1 Unmet Medical Need;234
14.4;2 Articular Cartilage;235
14.5;3 Healing in Cartilage;236
14.6;4 Tendons and Healing Tendon;237
14.7;5 Reconstruction of Articular Cartilage and Tendon-to-Bone Interface;239
14.7.1;5.1 Articular Cartilage-to-Bone Interface;239
14.7.1.1;5.1.1 Fibrocartilaginous Enthesis;239
14.8;6 Cell Sources and Properties;240
14.9;7 Expansion of Chondrocytes and Tenocytes for TE;241
14.10;8 Polymers for Cartilage and Tendon TE;242
14.10.1;8.1 Natural Polymers;242
14.10.1.1;8.1.1 Collagen;242
14.10.1.2;8.1.2 Silk and Chitosan;243
14.10.1.3;8.1.3 Decellularized Extracellular Matrices;243
14.11;9 Synthetic Polymers;244
14.12;10 Polymer-Based Hydrogels for TE;245
14.12.1;10.1 Cartilage;245
14.12.2;10.2 Tendon;245
14.13;11 HybridBiphasic Scaffolds;246
14.13.1;11.1 Cartilage;246
14.13.2;11.2 Tendon;246
14.14;12 Tools to Optimize Culture Conditions for Cartilage and Tendon TE;246
14.14.1;12.1 Cell Numbers;246
14.14.2;12.2 Seeding Conditions;247
14.14.3;12.3 Growth Factors in TE;247
14.14.3.1;12.3.1 Growth Factors for Tendon TE;247
14.14.3.2;12.3.2 Growth Factors for Cartilage TE;248
14.15;13 Polymer Topology;248
14.16;14 Conclusion: Future Challenges;249
14.17;References;250


Hala Zreiqat is expert in developing biomaterials for bone/cartilage tissue repair and regeneration and the in vivo/in vitro assessment of cell-biomaterial interaction. Colin Dunstan is an expert in bone cell biology and the interrelationships between bone cells and their microenvironment. Vicki Rosen is an expert is studying the physiological roles that bone morphogenetic proteins (BMPs) play in the development, maintenance, and repair of musculoskeletal tissues (bone, cartilage, tendon, ligament, meniscus, muscle).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.