Zourob / Elwary / Khademhosseini | Recognition Receptors in Biosensors | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 849 Seiten

Zourob / Elwary / Khademhosseini Recognition Receptors in Biosensors


1. Auflage 2010
ISBN: 978-1-4419-0919-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 849 Seiten

ISBN: 978-1-4419-0919-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Recognition receptors play a key role in the successful implementation of chemical and biosensors. Molecular recognition refers to non-covalent speci?c binding between molecules, one of which is typically a macromolecule or a molecular assembly, and the other is the target molecule (ligand or analyte). Biomolecular recognition is typically driven by many weak interactions such as hydrogen bo- ing, metal coordination, hydrophobic forces, van der Waals forces, pi-pi interactions and electrostatic interaction (due to permanent charges, dipoles, and quadrupoles) the polarization of charge distributions by the interaction partner leading to ind- tion and dispersion forces, and Pauli-exclusion-principle-derived inter-atomic repulsion, and a strong, 'attractive' force arising largely from the entropy of the solvent and termed the hydrophobic effect. In recent years, there has been much progress in understanding the forces that drive the formation of such complexes, and how these forces are relate to the physical properties of the interacting molecules and their environment allows rational design of molecules and materials that interact in speci?c and desired ways. This book presents a signi?cant and up-to-date review of the various recognition elements, their immobilization, characterization techniques by a panel of dist- guished scientists. This work is a comprehensive approach to the recognition receptors area presenting a thorough knowledge of the subject and an effective integration of these receptors on sensor surfaces in order to appropriately convey the state-of the-art fundamentals and applications of the most innovative approaches.

Zourob / Elwary / Khademhosseini Recognition Receptors in Biosensors jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Foreword;7
3;Contents;9
4;Contributors;12
5;Principles of Biomolecular Recognition;17
5.1;Abbreviations;18
5.2;Symbols;18
5.3;1.1 What Is Molecular Recognition?;18
5.4;1.2 General Principles of Interaction Thermodynamics;20
5.5;1.2.1 Free Energy, Enthalpy, and Entropy in Interacting Systems;21
5.6;1.2.2 Interaction Energy in the Association of Two Semi-Rigid Molecules in the Gas Phase;22
5.7;1.3 Interaction Energies in the Gas Phase;24
5.8;1.3.1 First-Order Electrostatic Interactions Involving Permanent Charges and Multipoles;25
5.9;.;34
5.10;1.3.2 Second-Order Induction–Polarization Energy;36
5.11;1.3.3 London Dispersion;38
5.12;1.3.4 Steric Repulsion (Pauli Exclusion) and Modeling of van der Waals Forces;41
5.13;1.3.5 Charge Transfer;43
5.14;1.4 Thermodynamics of Association in the Gas Phase;44
5.15;1.4.1 Thermodynamic Contributions from Nuclear Motions;44
5.16;1.4.2 Conformational Entropy;47
5.17;1.5 Interaction Energies in the Aqueous Environment;48
5.18;1.5.1 Effects of Water on Electrostatics;48
5.19;1.5.2 Effect of Water on Induction and van der Waals Forces;49
5.20;1.5.3 Effect of Water on Thermodynamic Contributions from Nuclear Motions;51
5.21;1.5.4 Hydrophobic Effect;52
5.22;1.5.5 Interactions of Dissolved Ligands with Macromolecules in Solution;53
5.23;1.6 A Synthesis;55
5.24;1.7 Concluding Remarks;57
5.25;References;57
6;Surface Sensitization Techniques and Recognition Receptors Immobilization on Biosensors and Microarrays;60
6.1;Abbreviations;61
6.2;2.1 Introduction;62
6.3;2.2 Adsorption, Chemical Grafting, and Entrapment 2.2.1 From Adsorption to Grafting, a Historical Perspective;63
6.4;2.2.2 Adsorption and Grafting: Physical Chemistry and Thermodynamics;66
6.5;2.2.3 Kinetic Aspects of Adsorption, Desorption, and Grafting;68
6.6;2.2.4 Nonspecific Adsorption as a Source of Background Signal;69
6.7;2.3 Classification of the Main Immobilization Pathways 2.3.1 Specificities of Biomolecules for Chemical Coupling;70
6.8;2.3.2 Strategy of Chemical Grafting;71
6.9;2.3.3 Chemical Grafting of Native Biomolecules and Associated Surface Biofunctionalization;72
6.10;2.3.4 Immobilization of Modified Biomolecules;78
6.11;2.4 Surface Functionalization;91
6.12;2.4.1 2D Immobilization: Grafting of Monolayers;93
6.13;2.4.2 3D Immobilization: Thick Layers, Entrapment Methods;107
6.14;2.4.3 Immobilization onto Colloidal Particles;124
6.15;2.5 Concluding Remarks;133
6.16;References;134
7;Analytical Tools for Biosensor Surface Chemical Characterization;148
7.1;Abbreviations;149
7.2;3.1 Introduction;149
7.3;3.2 Surface Chemical Analysis;149
7.4;3.2.1 Secondary Ion Mass Spectrometry (SIMS);150
7.5;3.2.2 X-Ray Photoelectron Spectroscopy;153
7.6;3.3 Examples;158
7.7;3.4 Cell-Based Biosensor Prototypes;158
7.8;3.4.1 Glyco-Engineering;163
7.9;3.4.2 Immunosensors;173
7.10;3.5 Concluding Remarks;182
7.11;References;182
8;Enzyme for Biosensing Applications;188
8.1;Abbreviations;189
8.2;4.1 Introduction;190
8.3;4.2 Biocatalysis and Enzyme Specificity;190
8.4;4.2.1 Classification of Enzymes;191
8.5;4.3 Enzyme Immobilization;194
8.6;4.3.1 Confinement Within a Semipermeable Membrane;194
8.7;4.3.2 Adsorption;194
8.8;4.3.3 Affinity Interactions;195
8.9;4.3.4 Entrapment;196
8.10;4.3.5 Cross-linking;196
8.11;4.3.6 Covalent Binding;197
8.12;4.4 Enzyme-Based Biosensors: Different Transduction Modes 4.4.1 Electrochemical Detection;198
8.13;4.4.2 Gravimetric Detection: Quartz Crystal Microbalance ( QCM), Surface Acoustic Wave ( SAW) Devices, Microcantilevers;208
8.14;4.4.3 Calorimetric Detection;209
8.15;4.4.4 Optical Detection;210
8.16;4.5 Concluding Remarks;219
8.17;References;220
9;Antibodies in Biosensing;232
9.1;Abbreviations;233
9.2;5.1 Introduction;233
9.3;5.2 Antibodies: An Overview 5.2.1 Immunoglobulin Expression In Vivo;234
9.4;5.2.2 Antibody Formats;234
9.5;5.2.3 Anti-Antibodies System;237
9.6;5.3 Antibodies as Biosensors: Various Technologies;237
9.7;5.3.1 Techniques Utilizing Immunoprecipitation;238
9.8;5.3.2 Radioimmunoassays;241
9.9;5.3.3 Enzymatic Immunoassays;241
9.10;5.3.4 Immunocytochemical and Immunohistochemical Assays;244
9.11;5.3.5 Flow Cytometry;245
9.12;5.3.6 Bead-Based Assays;247
9.13;5.3.7 Additional Techniques;251
9.14;5.4 Multiplexing Methodologies;252
9.15;5.4.1 ChIP-on-Chip Assays;252
9.16;5.4.2 Antibody Microarrays;252
9.17;5.4.3 Multiplexing IHC/ICC;254
9.18;5.4.4 Multispot ELISAs;255
9.19;5.5 Concluding Remarks;256
9.20;References;256
10;Peptides as Molecular Receptors;260
10.1;Abbreviations;260
10.2;6.1 Introduction;261
10.3;6.2 Peptides as Receptor Molecules;262
10.4;6.3 Combinatorial Chemistry;264
10.5;6.4 Dynamic Combinatorial Library;266
10.6;6.5 Phage Display Technology;269
10.7;6.6 Rational Design Approach Using Computational Methods;269
10.8;6.6.1 Molecular Mechanics;270
10.9;6.6.2 Building Blocks;272
10.10;6.6.3 Leapfrog;272
10.11;6.7 Molecular Imprinting;274
10.12;6.8 Application in Sensors;275
10.13;6.9 Future Perspective;278
10.14;6.10 Concluding Remarks;279
10.15;References;279
11;Carbohydrates as Recognition Receptors in Biosensing Applications;286
11.1;Abbreviations;286
11.2;7.1 Introduction;288
11.3;7.2 General Aspects of Glycochemistry 7.2.1 Introduction;290
11.4;7.2.2 Structural Aspects and Chemistry of Carbohydrates;290
11.5;7.2.3 Glycosylation Methods;295
11.6;7.2.4 Chemo-enzymatic Glycosylation Methods;297
11.7;7.2.5 Glycoconjugates;298
11.8;7.2.6 Examples of Naturally Occurring Carbohydrates;300
11.9;7.3 Biological Role;306
11.10;7.3.1 The Glycocalix and Extracellular Matrix Polysaccharides;306
11.11;7.3.2 Carbohydrates in Host–Pathogen Interactions and Metastasis;309
11.12;7.4 Carbohydrate-Based Biosensors;311
11.13;7.4.1 Obtaining Saccharide Probes;311
11.14;7.4.2 Surface Physicochemistry: Non-specific Adsorption and Immobilisation;312
11.15;+;318
11.16;+;318
11.17;+ +;318
11.18;+;318
11.19;+ +;318
11.20;+;318
11.21;+;318
11.22;+;318
11.23;+;318
11.24;7.4.3 Transduction;325
11.25;7.5 Biosensors: Applications 7.5.1 Antibody/ Antigen;336
11.26;7.5.2 Enzyme/Carbohydrates;337
11.27;7.5.3 Carbohydrates/Lectins;338
11.28;7.5.4 Whole Cells;339
11.29;7.6 Concluding Remarks;340
11.30;References;341
12;Nucleic Acid Diagnostic Biosensors;353
12.1;Abbreviations;353
12.2;8.1 Introduction;354
12.3;8.1.1 Development of Nucleic Acid Diagnostics;355
12.4;8.1.2 Properties of a Diagnostic Target;355
12.5;8.1.3 DNA and RNA targets;356
12.6;8.1.4 Nucleic Acid Diagnostics Methods;356
12.7;8.1.5 Polymerase Chain Reaction;357
12.8;8.2 Biosensors;358
12.9;8.2.1 Biosensor Assay formats;358
12.10;8.2.2 Biological Recognition Elements and Immobilisation Methods;359
12.11;8.3 Biosensor Formats for Nucleic Acid Diagnostics 8.3.1 Optical Based Systems;361
12.12;8.3.2 Surface Plasmon Resonance;361
12.13;8.3.3 Piezoelectric Biosensors;363
12.14;8.3.4 Electrochemical Biosensors;364
12.15;8.3.5 Other Detection Formats;365
12.16;8.3.6 Signal Amplification;365
12.17;8.4 Microarrays;366
12.18;8.5 Use of Nucleic Acid Biosensors for Rapid Pathogen Detection;368
12.19;8.6 Future Developments;369
12.20;8.6.1 Micro and Nano Scale Biosensors;370
12.21;8.7 Concluding Remarks;370
12.22;References;371
13;Tissue-Based Biosensors;374
13.1;Abbreviations;375
13.2;9.1 Introduction;375
13.3;9.2 Tissue-Based Biosensors in Experimental Animals;376
13.4;9.3 Incorporating Biosensor Molecules Into Tissues;377
13.5;9.4 Biophotonics-Based Biosensors and Biosensors Based on Other Physical Outputs;378
13.6;9.5 Measuring Light Output from Bioluminescence-Based Biosensor Tissues in Living Animals;380
13.7;9.6 Tissue-Based Biosensors Based on Bioluminescence Resonance Energy Transfer ( BRET);382
13.8;9.7 Examples of Tissue-Based Biosensors That Use BRET 9.7.1 Example 1: Vasopressin;383
13.9;9.7.2 Example 2: Rapamycin;385
13.10;9.8 Potential Uses of Tissue-Based Biosensors in Human Medicine;385
13.11;9.9 Concluding Remarks;388
13.12;References;388
14;Biosensing with Plants: Plant Receptors for Sensing Environmental Pollution;391
14.1;Abbreviations;391
14.2;10.1 Introduction;392
14.3;10.2 Biomonitoring;395
14.4;10.2.1 What Is Ligand–Receptor Interaction?;397
14.5;Ligand;397
14.6;Ligand Receptor Protein;397
14.7;10.2.2 The Role of Hormones in Plant Development and Stress Signaling;398
14.8;10.2.3 Receptor-Like Kinases;406
14.9;10.2.4 Cell Wall Associated Kinase and WAK-Like Kinase;409
14.10;10.2.5 Leucine-Rich Repeats: LRR-RLK Subfamily;410
14.11;10.3 Possible Implications of Ligand–Receptor Interaction Studies on Future Phytosensing Research;412
14.12;10.4 Concluding Remarks;413
14.13;Mega Plant Biotech Industry;414
14.14;References;415
15;Bacteriophage-Based Biosensors;422
15.1;Abbreviations;423
15.2;11.1 Introduction;424
15.3;11.2 Detection by Phage Amplification;427
15.4;11.3 Detection of Released Intracellular Components During Phage Lysis;428
15.5;11.3.1 Measurement of Adenosine Triphosphate Release;428
15.6;11.3.2 Measurement of Enzymes and Other Cytoplasmic Markers;429
15.7;11.3.3 Measurement of Phage Progeny;430
15.8;11.4 Direct Detection Through Cell Wall Recognition 11.4.1 Phage Immobilization;433
15.9;11.4.2 Affinity Detection;436
15.10;11.4.3 Fluorescently Labeled Phages;443
15.11;11.5 Indirect Detection 11.5.1 Detection Based on Inhibition of Metabolism and Growth;444
15.12;11.6 Detection by Reporter Phages;444
15.13;11.6.1 Bioluminescent Reporter Phages (lux and luc);445
15.14;11.6.2 Fluorescent Reporter Phages ( gfp);448
15.15;11.6.3 Colorimetric Reporter Phages ( lacZ);449
15.16;11.6.4 Ice Nucleation Reporter Phages ( inaW);449
15.17;11.7 Other Detection Methods Using Phages 11.7.1 Phage- Conjugated Quantum Dots;450
15.18;11.8 Conclusions and Future Remarks;450
15.19;References;451
16;Antibody Engineering for Biosensor Applications;457
16.1;Abbreviations;458
16.2;12.1 Antibodies – Nature’s Own Biosensor;458
16.3;12.2 Antibody Structure and Function;459
16.4;12.2.1 Immunoglobulin Gamma and the Ig Fold;459
16.5;12.2.2 Conventional and Recombinant Antibodies;463
16.6;12.2.3 The Nature of Antibody Binding;467
16.7;12.2.4 General Thermodynamic Stabilities of Antibody Scaffolds;473
16.8;12.3 Antibody Technologies 12.3.1 Conventional Antibodies;475
16.9;12.3.2 Recombinant Antibodies;479
16.10;12.3.3 Alternative Protein Scaffolds;487
16.11;12.3.4 Limitations of Protein Recognition Elements;488
16.12;12.4 Opportunities in Biosensor Development;489
16.13;12.4.1 Assay Economics;489
16.14;12.4.2 Speed of Analysis;491
16.15;12.4.3 Multiplexity of Analysis;492
16.16;12.5 The Biosensor Interface;494
16.17;12.5.1 Surface Adsorption of Antibodies – An Interface Case Study;495
16.18;12.5.2 The Necessity of Holistic Interface Development;498
16.19;12.6 Bespoke Antibody Engineering for Biosensors;500
16.20;12.6.1 Stability;500
16.21;12.6.2 Specificity;505
16.22;12.6.3 Sensitivity;507
16.23;12.6.4 Immobilization;511
16.24;12.6.5 Other Engineering Strategies for Biosensors;519
16.25;12.7 Concluding Remarks;520
16.26;References;521
17;Genetically Engineered Proteins as Recognition Receptors;536
17.1;Abbreviations;537
17.2;13.1 Introduction;537
17.3;13.1.1 Fluorescence in Biological Sensing;538
17.4;13.1.2 Determination of Apparent Dissociation Constant ( Kd) Using Fluorescence;539
17.5;13.2 Naturally Selected Biosensors 13.2.1 Fluorescent- Labeled Proteins as Biosensors;540
17.6;13.2.2 Genetically Modified Single Cys Biosensors;541
17.7;13.2.3 Glucose Binding Protein Biosensors;545
17.8;13.2.4 Design of GFP Fusion Biosensors;550
17.9;13.3 Designed Evolution 13.3.1 In Silico Evolution: Biosensors by Design;551
17.10;13.3.2 Computational Design Using ROSETTA;552
17.11;13.3.3 Computational Design Using DEZYMER;553
17.12;13.4 In Vivo Evolution: Receptor Proteins by Combinatorial Screening;553
17.13;13.4.1 Trp Cage Motif;554
17.14;13.4.2 g-B-Crystallin;555
17.15;13.4.3 Min-23 (a Knottin);555
17.16;13.4.4 Scorpion Toxins and Defensins;556
17.17;13.4.5 Lipocalins;557
17.18;13.4.6 Staphylococcal Protein A Domain;557
17.19;13.4.7 Ankyrin Repeat Proteins;558
17.20;13.4.8 Green Fluorescent Protein;558
17.21;13.5 Concluding Remarks;560
17.22;References;560
18;Biosensing Systems Based on Genetically Engineered Whole Cells;569
18.1;Abbreviations;570
18.2;14.1 Introduction;570
18.3;14.2 Whole-Cell-Based Sensing Systems;571
18.4;14.3 Luminescent Reporter Genes;571
18.5;14.4 Advantages and Disadvantages of Whole-Cell-Based Sensing Systems;575
18.6;14.5 Bacterial Whole-Cell Sensing Systems;576
18.7;14.5.1 General Toxicants;578
18.8;14.5.2 Stress Factors;579
18.9;14.5.3 Specific Analytes or Groups of Analytes;582
18.10;14.6 Eukaryotic Whole-Cell Sensing Systems;585
18.11;14.6.1 Yeast Cells;587
18.12;14.6.2 Mammalian Cells;587
18.13;14.7 Integration of Genetically Engineered Whole-Cell Sensing Elements in Biosensors;588
18.14;14.8 Concluding Remarks;592
18.15;References;593
19;Photosynthetic Proteins Created by Computational and Biotechnological Approaches in Biosensing Applications;603
19.1;Abbreviations;604
19.2;15.1 The Emergence of Technology Based on Photosynthetic Proteins;604
19.3;15.2 Key Issues in Designing Photosystems-Based Biosensors;606
19.4;15.3 General Remarks on the Reaction Centers of Photosystems;610
19.5;15.4 Immobilization Procedures for Biomediator Stabilization;613
19.6;15.5 Transduction Systems;616
19.7;15.6 Electrochemical Detection of Pollutants;617
19.8;15.7 Optical Transducers for the Detection of Herbicides;622
19.9;15.8 Enhancing Biomediator Properties by Bioengineering and Bioinformatics;625
19.10;15.9 Innovative Applications of Photosystem- Based Technologies;628
19.11;15.10 Why make Photosystems-Based Biosensors for Environmental Monitoring?;631
19.12;15.11 Concluding Remarks;632
19.13;References;632
20;Oligonucleotides as Recognition and Catalytic Elements;635
20.1;Abbreviations;636
20.2;16.1 Introduction;637
20.3;16.2 DNA Hybridization;637
20.4;16.2.1 Melting Temperature;639
20.5;16.2.2 Melting Temperature Prediction;639
20.6;16.2.3 Effect of Mismatched Bases on Melting Temperature;643
20.7;16.2.4 Hybridization Interference Through Self-Annealing;644
20.8;16.2.5 Hybridization to Probes Immobilized on a Solid Matrix;645
20.9;16.3 Application of Oligonucleotides as Recognition Elements for Nucleotide Analysis;646
20.10;16.3.1 Original Hybridization-Based Assays;646
20.11;16.3.2 Oligonucleotides as Recognition Elements in Polymerase Chain Reaction ( PCR);647
20.12;16.3.3 Whole Genome Amplification (WGA) Technologies;649
20.13;16.3.4 Microarray Applications;650
20.14;16.4 Oligonucleotides as Genetic Regulatory Elements;654
20.15;16.4.1 Antisense Oligonucleotides;654
20.16;16.4.2 RNA Interference (RNAi);656
20.17;16.4.3 Ribozymes;662
20.18;16.5 Oligonucleotides as Ligands-Aptamer Binding;664
20.19;16.5.1 Aptamer Structure and Design;664
20.20;16.5.2 Aptamer Selection;667
20.21;16.5.3 Non-SELEX Selection of Aptamers;668
20.22;16.5.4 Aptamer Applications;669
20.23;16.6 Concluding Remarks;669
20.24;References;670
21;Aptamers: Versatile Tools for Reagentless Aptasensing;679
21.1;Abbreviations;679
21.2;17.1 Introduction;680
21.3;17.2 Some General Notes on Aptamer Technology 17.2.1 Aptamer Selection: SELEX and Automated SELEX;681
21.4;17.2.2 Aptamer Stability: Spiegelmers and Chemically Modified Aptamers;685
21.5;17.2.3 The Molecular Basis of the AptamerÒTarget Interaction. Implications in Assay Development;688
21.6;17.2.4 Advantages and Drawbacks Versus Other Biorecognition Molecules;692
21.7;17.3 Aptamers as Bio-recognition Elements in Biosensor Development;694
21.8;17.3.1 Mass-Sensitive and Resonant Aptasensors: Specificity Online;695
21.9;17.3.2 Optical Aptasensors;697
21.10;17.3.3 Electrochemical Aptasensors;703
21.11;17.3.4 Aptamer Molecular Beacons: Aptabeacons;709
21.12;17.4 Concluding Remarks;714
21.13;References;715
22;Phage Display Technology in Biosensor Development;727
22.1;Abbreviations;728
22.2;18.1 Introduction;728
22.3;18.2 In Vitro Selections: Peptide Phage Display 18.2.1 Introduction to In Vitro Selections;731
22.4;18.2.2 Peptide Phage Display;732
22.5;18.2.3 Phage Display Targeting Biotin-Binding Proteins;734
22.6;18.2.4 Peptide Phage Display in the Detection of Toxins;736
22.7;18.2.5 Landscape Phage and the Detection of Salmonella typhimurium;737
22.8;18.3 Antibody Phage Display 18.3.1 Introduction to Antibody Phage Display;739
22.9;18.3.2 Early Examples of Antibody Phage Display;740
22.10;18.3.3 Phage Selected Antibodies in the Detection of Toxins;741
22.11;18.3.4 Lab on a Chip Applications;742
22.12;18.4 Protein Phage Display 18.4.1 Introduction to Protein Phage Display;742
22.13;18.4.2 Protein-protein Interactions in Phage Display;743
22.14;18.4.3 Protein-DNA Interactions in Phage Display: Zinc Finger Domains;746
22.15;18.5 Concluding remarks;747
22.16;References;748
23;Molecularly Imprinted Polymer Receptors for Sensors and Arrays;754
23.1;Abbreviations;755
23.2;19.1 Introduction;755
23.3;19.2 Molecular Imprinting 19.2.1 Chronology;757
23.4;19.2.2 Approaches;759
23.5;19.3 Ligating Monomers 19.3.1 Inorganic;760
23.6;19.3.2 Organic Monomers;760
23.7;19.4 Polymer Morphology 19.4.1 Bulk Polymers;761
23.8;19.4.2 Polymer Films;763
23.9;19.4.3 Surface Imprinting;763
23.10;19.4.4 Soluble MIPs;764
23.11;19.5 Sensor Transduction 19.5.1 Mass Sensors;764
23.12;19.5.2 Electrochemical Sensors;767
23.13;19.5.3 Optical Sensors;768
23.14;19.6 Sensor Examples 19.6.1 Mass Sensors;769
23.15;19.6.2 Electrochemical Sensors;770
23.16;19.6.3 Optical Sensors;772
23.17;19.7 Concluding Remarks;776
23.18;References;776
24;Biomimetic Synthetic Receptors as Molecular Recognition Elements;779
24.1;Abbreviations;779
24.2;20.1 Introduction;780
24.3;20.2 How to Achieve High Selectivity, Affinity, and Sensitivity;781
24.4;20.3 Examples of Different Analytes;785
24.5;20.3.1 Inorganic Cations;786
24.6;20.3.2 Anion Complexes;788
24.7;20.3.3 Complexation of Aminoacids and Peptides;792
24.8;20.3.4 Complexation of Nucleotides and Nucleosides;795
24.9;20.3.5 Carbohydrate Detection;801
24.10;20.3.6 Complexation of Terpenes and Steroids;807
24.11;20.4 Concluding Remarks;809
24.12;References;810
25;Kinetics of Chemo/Biosensors;820
25.1;Abbreviations;820
25.2;21.1 Background;821
25.3;21.2 Introduction;821
25.4;21.3 Adsorption Models;823
25.5;21.4 Theory;825
25.6;21.4.1 Single-Fractal Analysis;826
25.7;21.4.2 Dual-Fractal Analysis;827
25.8;21.5 Illustrations;827
25.9;21.5.1 Illustration 1;828
25.10;21.5.2 Illustration 2;833
25.11;21.6 Illustration 3;837
25.12;21.7 Estimating Kinetic Parameters and Explanation of Fractal Analysis Calculations 21.7.1 Estimating Kinetic Parameters;840
25.13;21.7.2 Explanation of Fractal Analysis Calculations;841
25.14;21.7.3 Example;842
25.15;21.7.4 Physical Interpretation of Kinetic Parameters;843
25.16;References;844
26;Index;846



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.