Buch, Deutsch, 654 Seiten, Format (B × H): 162 mm x 229 mm, Gewicht: 1014 g
Reihe: Mathematische Leitfäden
Buch, Deutsch, 654 Seiten, Format (B × H): 162 mm x 229 mm, Gewicht: 1014 g
Reihe: Mathematische Leitfäden
ISBN: 978-3-519-02230-5
Verlag: Vieweg+Teubner Verlag
Das Buch führt in die lineare und multilineare Algebra sowie Geometrie ein: Gruppen, Körper, Vektorräume und lineare Abbildungen, affine und euklidische Räume, Matrizen und Determinanten, lineare Gleichungssysteme, Normalformen von quadratischen Matrizen und Formen, Tensorprodukt, äußere Algebra, Vektorprodukt. Dabei wird das Wechselspiel zwischen Algebra und Geometrie herausgestellt und bei Beweisen benutzt.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1 Einführende Betrachtungen.- 1.1 Koordinaten.- 1.2 Vektoren.- 1.3 Abbildungen der Ebene.- 2 Vorbereitungen.- 2.1 Mengen.- 2.2 Vollständige Induktion und Widerspruchsbeweis und einige Anwendungen.- 2.3 Über transfinite Induktion und das Zornsche Lemma.- 3 Gruppen und Körper.- 3.1 Verknüpfungen: Definitionen und Beispiele.- 3.2 Gruppen.- 3.3 Körper und Ringe. Operationen.- 4 Vektorräume und affine Räume.- 4.1 Definition, Beispiele und einfache Eigenschaften.- 4.2 Unterraum, Summe und Faktorraum.- 4.3 Lineare Abhängigkeit, Basis und Dimension.- 4.4 Lineare Abbildungen, I.- 4.5 Lineare Abbildungen, II.- 4.6 Der duale Raum.- 4.7 Affine Räume.- 5 Matrizen, Determinanten, lineare Gleichungssysteme.- 5.1 Lineare Gleichungssysteme, I.- 5.2 Determinanten.- 5.3 Erneut Matrizen.- 5.4 Lineare Gleichungssysteme, II.- 5.5 Numerische Lösung linearer Gleichungssysteme.- 5.6 Fehleranalyse.- 6 Euklidische und unitäre Vektorräume und Räume.- 6.1 Skalarprodukt und Orthogonalität.- 6.2 Orthogonale und unitäre Abbildungen.- 6.3 Normalform orthogonaler und unitärer Abbildungen.- 6.4 Euklidische Räume.- 6.5 Affine Abbildungen und Bewegungen.- 6.6 Banachräume und Banachalgebren.- 6.7 Gewöhnliche Differentialgleichungen mit konstanten Koeffizienten.- 7 Polynome und Matrizen.- 7.1 Polynome.- 7.2 Eigenwerte, -vektoren und charakteristisches Polynom einer Matrix.- 7.3 Diagonalisierbare Matrizen.- 7.4 Allgemeine Normalformen.- 8 Lineare Optimierung.- 8.1 Beispiele und Problemstellung.- 8.2 Konvexe Mengen und Funktionen.- 8.3 Lineare Optimierung. Das Simplexverfahren.- 8.4 Dualitätstheorie.- 9 Multilineare Algebra.- 9.1 Tensorprodukt.- 9.2 Die Grassmannalgebra.- 9.3 Vektorprodukt, Spatprodukt und Volumen.- 10 Einführung in die Gruppentheorie.- 10.1 Normalteiler, Faktorgruppenund Homomorphismen.- 10.2 Abelsche Gruppen.- 10.3 Fortführung der Gruppentheorie.- 10.4 Die Sylow-Sätze.- 11 Affine Geometrie.- 11.1 Hyperflächen 2. Ordnung.- 11.2 Keplersche Gesetze und Kegelschnitte.- 11.3 Ellipsen.- 11.4 Hyperbeln.- 11.5 Parabeln.- 12 Projektive Geometrie.- 12.1 Die projektive Ebene.- 12.2 Der projektive Raum.- 12.3 Dualität in projektiven Räumen.- 12.4 Der affine Raum als Teilraum des projektiven Raumes.- 12.5 Das Doppelverhältnis.- 12.6 Quadratische Formen und Kegelschnitte.- 12.7 Kegelschnitte und Polaritäten in der projektiven Ebene.- 13 Geometrien.- 13.1 Erlanger Programm.- 13.2 Gebrochen-lineare Transformationen.- 13.3 Das Poincarésche Modell der nicht-euklidischen Ebene.- 13.4 Sphärische Trigonometrie und Navigation.- 13.5 Über die elliptische Ebene.- 13.6 Projektive Maßbestimmungen.- 14 Über Grundlagen der Geometrie.- 14.1 Axiome der euklidischen Ebene.- 14.2 Begründung der analytischen Geometrie.- 14.3 Herleitung der benutzten Sätze aus den Axiomen.- 14.4 Über den Satz des Pythagoras und ähnliche Dreiecke.- 15 Umsetzung der Algorithmen in ein einfaches Algebrasystem.- Literatur.- Symbole.