Buch, Englisch, 143 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 294 g
Buch, Englisch, 143 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 294 g
Reihe: Synthesis Lectures on Computer Science
ISBN: 978-3-031-42315-4
Verlag: Springer Nature Switzerland
This book illustrates how to achieve effective dimension reduction and data clustering. The authors explain how to accomplish this by utilizing the advanced dynamic graph learning technique in the era of big data. The book begins by providing background on dynamic graph learning. The authors discuss why it has attracted considerable research attention in recent years and has become well recognized as an advanced technique. After covering the key topics related to dynamic graph learning, the book discusses the recent advancements in the area. The authors then explain how these techniques can be practically applied for several purposes, including feature selection, feature projection, and data clustering.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Introduction.- Dynamic Graph Learning for Feature Projection.- Dynamic Graph Learning for Feature Selection.- Dynamic Graph Learning for Data Clustering.- Research Frontiers.