Zhu / Li | Information Security and Privacy | E-Book | sack.de
E-Book

E-Book, Englisch, 464 Seiten

Reihe: Lecture Notes in Computer Science

Zhu / Li Information Security and Privacy

29th Australasian Conference, ACISP 2024, Sydney, NSW, Australia, July 15–17, 2024, Proceedings, Part III
Erscheinungsjahr 2024
ISBN: 978-981-97-5101-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

29th Australasian Conference, ACISP 2024, Sydney, NSW, Australia, July 15–17, 2024, Proceedings, Part III

E-Book, Englisch, 464 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-97-5101-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume constitutes the refereed proceedings of the 29th Australasian Conference, ACISP 2024, held in Sydney, NSW, Australia, during July 15–17, 2024. 

The 70 full papers were carefully reviewed and selected from 232 submission. They are categorized in the following sections: Blockchain Technology, Privacy Enhancing Technologies, System Security, Network Security, AI Security. 

Zhu / Li Information Security and Privacy jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Blockchain Technology.- Enhancing Permissioned Blockchains with Controlled Data Authorization.- FXChain a multi consortium blockchain with flexible privacy preserving strategies.- An Efficient Vulnerability Detection for Smart Contracts Using Gated Graph Neural Network.- Lightweight Instance Batch Schemes towards Prover efficient Decentralized Private Computation.- CrossAAD Cross-chain Abnormal Account Detection.- AegisDB Scalable Blockchain Database with Secure Decentralised Load Balancing.- Towards Scalable and Secure IoTs Transactions A New Bi directional Payment Channel without Third Party Monitoring.- Privacy Enhancing Technologies.- Understanding Privacy in Smart Speakers A Narrative Review.- RPPDFL A Robustness and Privacy Preserving Decentralized Federated Learning System.- FedSCD Federated learning with Semi centralization Discrepancy awareness and Dual model Collaboration.- Pirates Anonymous Group Calls Over Fully Untrusted Infrastructure.- SecuPath A Secure and Privacy Preserving Multiparty Path Planning Framework in UAV Applications.- System Security.- TSHMD Explainable Deep Learning for Time Series HPCs based IoT Malware Detection.- Security Research for Android Remote Assistance Apps.- SynBoost Robust Text Generation Model Via Beam Search and Synonym Driven Boosting.- CCED A Configuration Failure Prevention Method for Autonomous Driving Systems.- Action Driven UAV Fingerprint Verification with Perception Data.- AggNoteBot A Robust Botnet Building using Aggressive Cloud Notes.- Network Security.- FSAM Framework for Online CDN based Website Classification.- Towards Private Multi-Operator Network Slicing.- AI Security.- An Encrypted Traffic Classification Framework Based on Higher Interaction Graph Neural Network.- PassTSL Modeling Human Created Passwords through Two Stage Learning.- Detect Llama Finding Vulnerabilities in Smart Contracts using Large Language Models.- MMOOC A Multimodal Misinformation Dataset for Out of Context News Analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.