Zhu / Guan / Li | Multi-modal Hash Learning | Buch | 978-3-031-37293-3 | sack.de

Buch, Englisch, 199 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 384 g

Reihe: Synthesis Lectures on Information Concepts, Retrieval, and Services

Zhu / Guan / Li

Multi-modal Hash Learning

Efficient Multimedia Retrieval and Recommendations

Buch, Englisch, 199 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 384 g

Reihe: Synthesis Lectures on Information Concepts, Retrieval, and Services

ISBN: 978-3-031-37293-3
Verlag: Springer International Publishing


This book systemically presents key concepts of multi-modal hashing technology, recent advances on large-scale efficient multimedia search and recommendation, and recent achievements in multimedia indexing technology.  With the explosive growth of multimedia contents, multimedia retrieval is currently facing unprecedented challenges in both storage cost and retrieval speed. The multi-modal hashing technique can project high-dimensional data into compact binary hash codes. With it, the most time-consuming semantic similarity computation during the multimedia retrieval process can be significantly accelerated with fast Hamming distance computation, and meanwhile the storage cost can be reduced greatly by the binary embedding.  The authors introduce the categorization of existing multi-modal hashing methods according to various metrics and datasets. The authors also collect recent multi-modal hashing techniques and describe the motivation, objective formulations, and optimization steps for context-aware hashing methods based on the tag-semantics transfer.
Zhu / Guan / Li Multi-modal Hash Learning jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1 Introduction.- 2 Context-aware Hashing.- 3 Cross-modal Hashing.- 4 Composite Multi-modal Hashing.- 5 Multi-modal Discrete Collaborative Filtering.- 6 Research Frontiers.


Lei Zhu, Ph.D. is a Professor in the School of Information Science and Engineering, Shandong Normal University. He received his B.Eng. and Ph.D. degrees from Wuhan University of Technology and Huazhong University Science and Technology, respectively. He was a Research Fellow at the University of Queensland (2016-2017). His research interests include large-scale multimedia content analysis and retrieval. 

Jingjing Li, Ph.D, is a Professor in the School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC). He received his B.Eng., M.Sc. and Ph.D. degrees from UESTC. His research interests include domain adaptation and zero-shot learning. 

Weili Guan received a master degree from National University of Singapore. After that, she joined Hewlett Packard Enterprise in Singapore as a Software Engineer and worked there for several years.  She is currently a PhD student with the Faculty of Information Technology, Monash University (Clayton Campus), Australia. Her research interests are multimedia computing and information retrieval. She has authored or co-authored more than 30 papers at first-tier conferences and journals, such as ACM MM, SIGIR, and IEEE TIP.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.