Buch, Englisch, 542 Seiten, Format (B × H): 188 mm x 235 mm, Gewicht: 1218 g
Machine Learning and Multiple Object Approaches
Buch, Englisch, 542 Seiten, Format (B × H): 188 mm x 235 mm, Gewicht: 1218 g
ISBN: 978-0-12-802581-9
Verlag: Elsevier Science
Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects.
Learn:
- Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects
- Methods and theories for medical image recognition, segmentation and parsing of multiple objects
- Efficient and effective machine learning solutions based on big datasets
- Selected applications of medical image parsing using proven algorithms
Zielgruppe
<p>Industry practitioners and university researchers in medical imaging.</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
Weitere Infos & Material
PrefaceChapter 1 Introduction to Medical Image Recognition and ParsingChapter 2 Discriminative Anatomy Detection: Classification vs. RegressionChapter 3: Information Theoretic Landmark DetectionChapter 4: Submodular Landmark DetectionChapter 5: Random Forests for Anatomy Recognition Chapter 6: Integrated Detection Network for Multiple Object RecognitionChapter 7: Optimal Graph-Based Method for Multi-Object Segmentation Chapter 8: Parsing of Multiple Organs Using Learning Method and Level SetsChapter 9: Context Integration for Rapid Multiple Organ ParsingChapter 10: Multi-Atlas Methods and Label FusionChapter 11: Multi-Compartment Segmentation Framework Chapter 12: Deformable Segmentation via Sparse Representation and Dictionary Learning Chapter 13: Simultaneous Nonrigid Registration, Segmentation, and Tumor Detection Chapter 14: Whole Brain Anatomical Structure Parsing Chapter 15: Aortic and Mitral Valve Segmentation Chapter 16: Parsing of Heart, Chambers and Coronary Vessels Chapter 17: Spine Segmentation Chapter 18: Parsing of Rib and Knee BonesChapter 19: Lymph Node Segmentation Chapter 20: Polyp Segmentation from CT Colonoscopy