E-Book, Englisch, 376 Seiten
Reihe: Biological and Medical Physics, Biomedical Engineering
Zhou / Greenbaum / Zhou. Implantable Neural Prostheses 1
1. Auflage 2009
ISBN: 978-0-387-77261-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Devices and Applications
E-Book, Englisch, 376 Seiten
Reihe: Biological and Medical Physics, Biomedical Engineering
ISBN: 978-0-387-77261-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Significant progress has been made in the development of neural prostheses to restore human functions and improve the quality of human life. Biomedical engineers and neuroscientists around the world are working to improve design and performance of existing devices and to develop novel devices for artificial vision, artificial limbs, and brain-machine interfaces. This book, Implantable Neural Prostheses 1: Devices and Applications,ispart one of a two-book series and describes state-of-the-art advances in techniques associated with implantable neural prosthetic devices and their applications. Devices covered include sensory prosthetic devices, such as visual implants, cochlear implants, auditory midbrain implants, and spinal cord stimulators. Motor prosthetic devices, such as deep brain stimulators, Bion microstimu- tors, the brain control and sensing interface, and cardiac electro-stimulation devices are also included. Progress in magnetic stimulation that may offer a non-invasive approach to prosthetic devices is introduced. Regulatory approval of implantable medical devices in the United States and Europe is also discussed.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;7
3;Contributors;9
4;List of Acronyms;12
5;Microelectronic Visual Prostheses;16
5.1;1 Introduction;16
5.2;2 Biomedical Engineering Approaches for Restoring Vision to the Blind;17
5.2.1;2.1 Visual Pathway;17
5.2.2;2.2 Eye and the Retina;18
5.2.3;2.3 Candidate Retina Diseases for the Retinal Implants;20
5.2.4;2.4 Biomedical Engineering Approaches for Visual Implants;21
5.3;3 Microelectronic Visual Implant Technologies;21
5.3.1;3.1 Retinal Stimulation and Retinal Implants;22
5.3.2;3.2 Epiretinal Implant;23
5.3.3;3.3 Subretinal Implant;27
5.3.4;3.4 Extraocular Implant;30
5.3.5;3.5 Visual Stimulation in the Brain;32
5.3.5.1;3.5.1 Cortical Stimulation;32
5.3.5.2;3.5.2 Visual Stimulation in LGN of the Thalamus;34
5.3.6;3.6 Optic Nerve Stimulation;35
5.4;4 Engineering Challenges in the Development of Visual Prostheses;35
5.4.1;4.1 Implant Packaging and Biocompatibility of Materials;36
5.4.2;4.2 Thermal Effects of Stimulator on Tissues and Heat Damage;39
5.4.3;4.3 Stimulation Microelectrode Arrays;41
5.4.3.1;4.3.1 Planar Electrodes;42
5.4.3.2;4.3.2 Flexible Thin-Film Electrode Arrays;43
5.4.4;4.4 Electrode Materials;45
5.4.4.1;4.4.1 Capacitive Electrodes;45
5.4.4.2;4.4.2 Titanium Nitride;46
5.4.4.3;4.4.3 Iridium Oxide;47
5.4.4.4;4.4.4 Platinum Gray;47
5.4.5;4.5 Surgical Attachment of Stimulation Microelectrode Arrays;49
5.5;5 Conclusion;51
5.6;References;51
6;Visual Prosthesis for Optic Nerve Stimulation;58
6.1;1 Introduction;58
6.2;2 Penetrating Microelectrode Arrays;61
6.2.1;2.1 Noise and Impedance Analyses;61
6.2.2;2.2 The Tungsten Shafts;63
6.2.3;2.3 The Pt/Ir Alloy Shafts;64
6.2.4;2.4 Silicon-Based Microelectrode Arrays;65
6.3;3 Neural Electrical Stimulator;67
6.3.1;3.1 Communication Unit;67
6.3.2;3.2 Processing and Control Unit;68
6.3.3;3.3 Electrode Driver Unit;69
6.4;4 Image Acquisition and Processing;71
6.4.1;4.1 Image Acquisition;71
6.4.2;4.2 DSP-Based Image Processing System;72
6.4.2.1;4.2.1 Hardware of Image Processing System;72
6.4.2.2;4.2.2 Image Processing Strategies;73
6.4.2.2.1;Image Classification;74
6.4.2.2.2;Different Image Processing Strategies According to Various Complexities;75
6.4.2.2.3;(A) Strategy 1: Simple Image;75
6.4.2.2.4;(B) Strategy 2: Middle-Complexity Image;75
6.4.2.2.5;(C) Strategy 3: Complex Image;76
6.5;5 Psychophysical Study for Visual Prosthesis;77
6.5.1;5.1 Recognition of Chinese Characters with a Limited Number of Pixels;78
6.5.1.1;5.1.1 Recognition Accuracy of Pixelized Chinese Characters Using Simulated Prosthetic Vision;78
6.5.1.2;5.1.2 Recognition of Chinese Characters with a Limited Number of Pixels Based on Complexity Analysis;79
6.5.2;5.2 Image Processing Based Recognition of Images with a Limited Number of Pixels;80
6.5.3;5.3 Dispersion and Accuracy of Simulated Phosphene Positioning;83
6.5.3.1;5.3.1 Tactile Perception Based on Phosphene Positioning Using Simulated Prosthetic Vision;84
6.5.3.2;5.3.2 Dispersion and Accuracy of Simulated Phosphene Positioning Using Tactile Board;86
6.6;6 Surgical Approach to Expose the Optic Nerve;87
6.6.1;6.1 Surgical Technique;87
6.6.2;6.2 Efficiency and Safety;88
6.7;7 In Vivo Electrophysiological Study;89
6.7.1;7.1 Subjects;89
6.7.2;7.2 Temporal Properties;89
6.7.2.1;7.2.1 Stimulations;89
6.7.2.2;7.2.2 Recordings;90
6.7.2.3;7.2.3 Temporal Properties of EEP;91
6.7.3;7.3 Spatial Properties;93
6.7.3.1;7.3.1 Stimulations;93
6.7.3.2;7.3.2 Recordings;94
6.7.3.3;7.3.3 The Spatial Responses to the Optic Nerve Stimulation;94
6.7.4;7.4 Assessment of the Damage to the Optic Nerve;96
6.8;8 Conclusion;96
6.9;References;96
7;Cochlear Implants;99
7.1;1 Introduction;99
7.2;2 System Review;101
7.3;3 External Unit;104
7.4;4 Radio Frequency Transmission Link;106
7.5;5 Internal Unit;108
7.5.1;5.1 Receiver and Decoder;108
7.5.2;5.2 Stimulator;110
7.5.3;5.3 Electrodes;111
7.5.3.1;5.3.1 Current Electrodes, Efficiency, and Intracochlear Trauma;111
7.5.3.2;5.3.2 Insertion Depth;114
7.5.3.3;5.3.3 Future Cochlear Implant Electrode Design;115
7.5.3.4;5.3.4 Summary;116
7.5.4;5.4 Back Telemetry;117
7.6;6 Safety Considerations;118
7.6.1;6.1 Biocompatibility;118
7.6.2;6.2 Sterilization;119
7.6.3;6.3 Mechanical Safety;120
7.6.4;6.4 Energy Exposure;120
7.7;7 Evaluation;121
7.8;8 Future Direction;121
7.9;References;123
8;A New Auditory Prosthesis Using Deep Brain Stimulation: Development and Implementation;131
8.1;1 Introduction;132
8.1.1;1.1 Rationale;132
8.1.2;1.2 Design Considerations;136
8.2;2 Device Development and Testing;141
8.2.1;2.1 Human Prototype Array;141
8.2.2;2.2 Feasibility and Safety Studies;144
8.3;3 Implementation in Humans;149
8.3.1;3.1 Surgical Approach;149
8.3.2;3.2 Patient Fitting;154
8.3.3;3.3 Hearing Performance;158
8.4;4 Future Directions;160
8.4.1;4.1 Electrode Technologies;161
8.4.2;4.2 Stimulation Strategies;163
8.5;References;164
9;Spinal Cord Stimulation: Engineering Approaches to Clinical and Physiological Challenges;168
9.1;1 Introduction to Spinal Cord Stimulation Therapy;168
9.1.1;1.1 Brief History of Spinal Cord Stimulation;168
9.1.2;1.2 Paresthesia: A Serendipitous ‘Side Effect’;172
9.1.3;1.3 Introduction to Clinical and Physiological Challenges;174
9.2;2 Optimization of the Electric Field;175
9.2.1;2.1 Number of Implanted Contacts;175
9.2.2;2.2 Contact Size and Spacing;176
9.2.3;2.3 Electrical Sources for Stimulation;180
9.2.3.1;2.3.1 Voltage and Current Regulation;182
9.2.3.2;2.3.2 Single- and Multiple-Source Systems;183
9.2.3.3;2.3.3 Examples of Multiple-Source Systems;185
9.2.4;2.4 Electrical Management of Lead Migration;186
9.3;3 Clinical Programming Time;189
9.3.1;3.1 Historical Programming Approach;189
9.3.2;3.2 Device Programming in the Operating Room and Post-implant;190
9.3.3;3.3 Device Reprogramming;191
9.3.4;3.4 Real-Time Programming Strategies;192
9.4;4 Stimulation Parameters;194
9.4.1;4.1 Effects of Pulse Width;194
9.4.2;4.2 Effects of Stimulation Rate;195
9.5;5 Computational Models as an Engineering Tool;196
9.5.1;5.1 University of Twente Computational Model: Insight and Clinical Impact;196
9.5.1.1;5.1.1 Sensitivity Analysis of Transverse Tripolar Stimulation with Percutaneous Leads;197
9.5.1.2;5.1.2 Field Steering Between Contacts of Parallel Leads;199
9.5.1.3;5.1.3 Effect of Pulse Width;200
9.6;6 Summary;202
9.7;References;202
10;Microelectrode Technologies for Deep Brain Stimulation;208
10.1;1 Introduction;208
10.2;2 Implant Sites and Emerging Applications;210
10.3;3 Design Considerations and Challenges for Microelectrode Technologies in DBS;211
10.3.1;3.1 Summary of Key Requirements;211
10.3.2;3.2 Fabrication Technology and Materials;213
10.3.2.1;3.2.1 Substrates;213
10.3.2.2;3.2.2 Electrode Materials;217
10.3.3;3.3 Stimulation Parameters and Requirements of a Clinical System;219
10.3.4;3.4 Stimulation Safety and Tissue Response;220
10.3.5;3.5 Closed-Loop Control of DBS;222
10.3.6;3.6 Recording Capability and Long-Term Stability;223
10.4;4 Conclusions;225
10.5;References;225
11;Implantable Cardiac Electrostimulation Devices;233
11.1;1 Introduction;233
11.2;2 Pacemaker, ICD, and Lead Codes;234
11.3;3 Pacemakers and ICDs;234
11.3.1;3.1 External Pacemakers;234
11.3.2;3.2 Artificial Implantable Ventricular Pacemakers;236
11.3.3;3.3 Artificial Implantable Atrial Pacemakers;242
11.3.4;3.4 Dual-Chamber Pacemakers;243
11.3.5;3.5 Cardiac Resynchronization Therapy (CRT) Devices (Pacing Both the Right and the Left Heart);244
11.3.6;3.6 Implantable Cardioverter Defibrillators;248
11.4;4 Modern Pacemaker and ICD Components;248
11.4.1;4.1 Pacemaker Power Sources;248
11.4.2;4.2 ICD Power Sources;249
11.4.3;4.3 Pacemaker Circuitry Design Requirements;249
11.4.4;4.4 ICD Circuitry Design Elements;250
11.4.5;4.5 Pacemaker and ICD Mechanical Components;250
11.4.6;4.6 Leads;251
11.4.7;4.7 Programmability and Automaticity;253
11.5;5 Summary of Indications for Pacemaker Implant;253
11.5.1;5.1 The Cardiac Conduction System;254
11.5.2;5.2 Acquired AV Block;255
11.5.3;5.3 Sinus Node Dysfunction (Sick Sinus Syndrome or SSS);255
11.5.4;5.4 Prevention and Termination of Tachyarrhythmias;255
11.5.5;5.5 Hypersensitive Carotid Sinus and Neurocardiogenic Syncope;256
11.5.6;5.6 Cardiac Transplantation;256
11.5.7;5.7 Atrial Fibrillation (AF) and Flutter;256
11.5.8;5.8 Heart Failure;256
11.6;6 Summary of Indications for ICD Implant;257
11.7;7 Clinical Management of Complications, and Related Improvements Over Time;258
11.7.1;7.1 Medical Complications;258
11.7.2;7.2 Hardware Complications;259
11.8;8 Conclusions;259
11.9;References;260
12;The Bion Microstimulator and its Clinical Applications;264
12.1;1 Introduction;264
12.2;2 Development of Bion Microstimulator;265
12.2.1;2.1 First-Generation RF-Powered Bion Microstimulator;266
12.2.2;2.2 Second-Generation RF-Powered BionMicrostimulator;267
12.2.3;2.3 First-Generation Battery-Powered Bion Microstimulator;271
12.2.4;2.4 Second-Generation Battery-Powered Bion Microstimulator;272
12.3;3 Clinical Applications of Bion Microstimulator;272
12.3.1;3.1 RFB1 Applications;272
12.3.1.1;3.1.1 RFB1 for Shoulder Subluxation in Post-Stroke Patients;273
12.3.1.2;3.1.2 RFB1 for Knee Osteoarthritis;274
12.3.1.3;3.1.3 RFB1 for Post-Stroke Hand Contractures;274
12.3.1.4;3.1.4 RFB1 for Foot Drop;275
12.3.1.5;3.1.5 RFB1 for Pressure Ulcer Prevention;275
12.3.2;3.2 RFB2 Applications;276
12.3.2.1;3.2.1 RFB2 for Post-Stroke Shoulder Subluxation;276
12.3.2.2;3.2.2 RFB2 for Post-Stroke Hand and Arm Rehabilitation;276
12.3.3;3.3 BPB1 Applications;277
12.3.3.1;3.3.1 BPB1 for Overactive Bladder;277
12.3.3.2;3.3.2 BPB1 for Refractory Headaches;279
12.3.3.3;3.3.3 BPB1 for GERD (Preclinical);281
12.4;4 Summary;281
12.5;References;282
13;Brain Control and Sensing of Artificial Limbs;285
13.1;1 Introduction;285
13.2;2 Limb Loss and Electrical Neural Stimulation;286
13.2.1;2.1 Limb Loss in the United States;286
13.2.2;2.2 Stimulation on Peripheral Nerves, Neurons, and Neuroma;287
13.3;3 Experiments on Humans and Animals;288
13.3.1;3.1 Development of the Utah Bed of Nails Electrode Array;288
13.3.2;3.2 First Human Implant to Control Robotic Devices;288
13.3.3;3.3 Testing of the Concept in Amputees;291
13.4;4 Implants: Designing the Ultimate Peripheral Nerve Interface;292
13.4.1;4.1 The Implant Design;292
13.4.2;4.2 Challenges and Problems in the Development of Implantable Miniature Peripheral Nerve Interface;294
13.4.2.1;4.2.1 Packaging Hermeticity;294
13.4.2.2;4.2.2 Implant Size;296
13.4.2.3;4.2.3 Internal Construction of the Implant;296
13.4.2.4;4.2.4 Components on the Hybrid Circuit;297
13.4.2.5;4.2.5 Coil and Antenna;298
13.4.2.6;4.2.6 Chip and Crystal Oscillator;298
13.4.2.7;4.2.7 Indifferent Electrodes;298
13.4.2.8;4.2.8 Wireless Power;298
13.4.2.9;4.2.9 Wireless Communication;298
13.4.2.10;4.2.10 Prosthetic Master Control Unit (PMCU);299
13.4.2.11;4.2.11 Clinicians Fitting Unit;300
13.5;5 Conclusion;300
13.6;References;300
14;Magnetic Stimulation of Neural Tissue: Techniques and System Design;302
14.1;1 Introduction;302
14.2;2 Field-Based Comparison of Electrical and Magnetic Stimulation;304
14.3;3 Magnetic Modeling;310
14.4;4 Core;317
14.5;5 Systems for Magnetic Stimulation;321
14.6;6 Pulsed System;322
14.6.1;6.1 Scaling;326
14.7;7 Current Source System;327
14.7.1;7.1 Overview;327
14.7.2;7.2 Circuit Design;328
14.7.3;7.3 Rate of Closure Stability Analysis;330
14.7.4;7.4 Output Stage Design Details;332
14.7.4.1;7.4.1 Scaling;334
14.7.5;7.5 Circuit Testing;334
14.7.5.1;7.5.1 Verification of the Current Waveforms;334
14.7.5.2;7.5.2 Verification of the Electric Field;336
14.8;8 Neural Preparations;336
14.9;9 Selection;340
14.10;10 Methods;341
14.10.1;10.1 Data Acquisition and Control;341
14.10.1.1;10.1.1 Electrophysiological Recording and Stimulation;342
14.10.1.2;10.1.2 Tissue Culture;344
14.11;11 Results;345
14.12;12 Conclusion;347
14.13;Appendix: Modeling Magnetic Stimulation with Solenoid Coil;347
14.14;Current Slew Rate and Power Consumption;350
14.14.1;14.1 Slew Rate;350
14.14.2;14.2 Power Consumption;352
14.15;15 Scaling with Planar Coil;352
14.16;References;353
15;Regulatory Approval of Implantable Medical Devices in the United States and Europe;361
15.1;1 Introduction;361
15.2;2 Regulatory Affairs Approval Process in the United States;361
15.2.1;2.1 Classification Panels;362
15.2.1.1;2.1.1 Class I Devices;362
15.2.1.2;2.1.2 Class II Devices;363
15.2.1.3;2.1.3 Class III Devices;364
15.2.2;2.2 Clinical Phase;365
15.2.2.1;2.2.1 Pilot Trial;365
15.2.2.2;2.2.2 Pivotal Trial;365
15.2.3;2.3 Clinical Trials;366
15.2.4;2.4 Types of Domestic Applications;367
15.2.4.1;2.4.1 Premarket Notifications or 510(k)s;367
15.2.4.2;2.4.2 Expedited PMAs;368
15.2.4.3;2.4.3 Premarket Reports;368
15.2.4.4;2.4.4 Panel-Track Supplements;368
15.2.4.5;2.4.5 180-Day PMA Supplements;368
15.2.4.6;2.4.6 Real-Time PMA Supplements;368
15.2.4.7;2.4.7 Original Premarket Approval (PMA);368
15.2.5;2.5 The 510(k) Review Process;368
15.2.6;2.6 The PMA Process;369
15.2.7;2.7 Humanitarian Device Exemptions (HDEs);372
15.3;3 European Regulatory Approval Process;375
15.3.1;3.1 European Union (EU) Regulatory Approval;375
15.3.1.1;3.1.1 Competent Authority;375
15.3.1.2;3.1.2 Notified Bodies;376
15.3.2;3.2 European Device Classification;376
15.3.2.1;3.2.1 Class I;376
15.3.2.2;3.2.2 Class IIa;377
15.3.2.3;3.2.3 Class IIb;377
15.3.2.4;3.2.4 Class III;377
15.4;4 Conclusion;377
15.5;References;378
16;Index;379




