Buch, Englisch, Band 487, 192 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 483 g
Differential Geometric Methods
Buch, Englisch, Band 487, 192 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 483 g
Reihe: Lecture Notes in Control and Information Sciences
ISBN: 978-3-030-73741-2
Verlag: Springer International Publishing
This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms.
The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented.
Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
Weitere Infos & Material
1. Observability and Observer for Dynamical Systems.- 2. Background on Differential Geometry.- 3. Observer Normal Form with Output Injection.- 4. Observer Normal Form with Output Injection with Output Diffeomorphism.- 5. Observer Normal Form by Means of Extended Dynamics.- 6. Output-Depending Observer Normal Form.- 7. Extension to Nonlinear Partially Observable Dynamical Systems.- 8. Extension to Nonlinear Dynamical Systems With Multiple Outputs.- 9. Extension to Nonlinear Singular Dynamical Systems.