Zhao / Weng / Zheng | Blockchain and Web3.0 Technology Innovation and Application | Buch | 978-981-97-9411-9 | sack.de

Buch, Englisch, Band 2277, 513 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 797 g

Reihe: Communications in Computer and Information Science

Zhao / Weng / Zheng

Blockchain and Web3.0 Technology Innovation and Application

First Conference, BWTAC 2024, Guangzhou, China, November 6-8, 2024, Proceedings
2024
ISBN: 978-981-97-9411-9
Verlag: Springer Nature Singapore

First Conference, BWTAC 2024, Guangzhou, China, November 6-8, 2024, Proceedings

Buch, Englisch, Band 2277, 513 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 797 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-97-9411-9
Verlag: Springer Nature Singapore


This book constitutes the refereed proceedings of the First Conference on Blockchain and Web3 Technology Innovation and Application, BWTAC 2024, held in Guangzhou, China, during, November 6–8, 2024.

The 36 full papers and 9 short papers included in this book were carefully reviewed and selected from 106 submissions. They were categorized in the following topica sections: Architectures and Technologies, Privacy Protection and Data Security, Artificial Intelligences, Security, Trading Systems, Cross Domains Applications and Emerging Technologies.

Zhao / Weng / Zheng Blockchain and Web3.0 Technology Innovation and Application jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Behavioral Unicity: On the Limits of Anonymized Social Behavior Metadata.

.- Research on Effects of Blockchain Pilot Programs in Regional Equity Markets: Evidence from Participant and Non-Participant Institutions.

.- Tailoring Noise to Fit: An Adaptive Noise Optimization Mechanism against Gradient Leakage.

.- Design of Privacy-Preserving Smart Contracts for Regional Equity Markets.

.- Deep Learning Empowered Blockchain Transaction Prediction and Anomaly Detection.

.- A Blockchain-based Framework for Crowdsourcing Evaluation of Large Language Models.

.- Trusted Data Authorization and Sharing Method Based on Distributed Digital Identity.

.- Secure and Efficient Deduplication for Encrypted Image Data in Cloud Storage.

.- SolSecure: A Security Analyzer for Integer Bugs in Smart Contracts.

.- BBP: Blockchain-enabled Biological Assets Identity Protection System.

.- Accountability Mechanism for Reliable Mobile Crowdsourcing with Efficient Blockchain.

.- Who will be hooked?: A Phishing Fraud Detection Model Based on Dynamic Graph Temporal Feature Coding in Ethereum.

.- Static Analysis Detection of Hyperleger Fabric Read-Write Logic Vulnerability.

.- A Dataset Quality Evaluation Algorithm for Data Trading on Blockchain.

.- A Variable (n, n) Threshold Secret Sharing Scheme Based on Paillier Cryptosystem.

.- Design and Validation of a Hyper-Converged Blockchain Hardware and Software System Based on Domestic Chips.

.- DFADNet: A Diverse-Feature Adaptive Network for Web3.0-oriented Deep Forgery Detection.

.- Privacy Protection Model of International Cold Chain Trade Blockchain Platform Based on Zero-Knowledge Proofs.

.- Blockchain-based Federated Recommendation with Incentive Mechanism.

.- A Treatment of EIP-1559: Enhancing Transaction Fee Mechanism through Nth-Price Auction.

.- Unravelling Stablecoin-favored Ecosystem: Extracting, Exploring On-chain Data from TRON Blockchain.

.- Robust and Efficient Group-Based Ring Federated Learning Framework with Double-Masking Mechanism.

.- Centralized Oracle for Smart Contract Applications, Information Output Methods, and Systems.

.- DataSafe: Copyright Protection with PUF Watermarking and Blockchain Tracing.

.- A GAN anomaly detection method based on multi-scale endogenous enhancement.

.- A Comprehensive Review of Blockchain-Enabled Dynamic and Credible Spectrum Sharing.

.- Heterogeneous Data Fusion Based Vulnerability Detection for Ethereum Smart Contracts.

.- Adaptive Federated Learning Based on Device Performance in a Heterogeneous Environment of Medical Computing Devices.

.- MSCV: A Cross-chain Smart Contract State Data Verification Model Based on MTC.

.- How Does Hashgraph-based Blockchain Work in MANETs: A Theoretical Analysis Model.

.- Heterogeneous Graph Structure Learning Based on Feature and Topology Information Extraction.

.- A blockchain-based traceable and verifiable digital circuit trade method with dual-signature strategy.

.- Personalized medical federated learning based on mutual knowledge distillation in object heterogeneous environment.

.- Cryptocurrency Transaction Anomaly Detection Based on Chebyshev Graph Neural Network.

.- Validating the integrity for Deep Learning Models based on Zero-knowledge proof and Blockchain.

.- CLB-BAFL: Critical Learning Behaviour Verification Mechanism for Blockchain-Based Asynchronous Federated Learning.

.- GeePT: Governance of Efficient and Extensible Privacy-preserving Transaction for Blockchain.

.- HetGNN-TF: Self-supervised Learning on Heterogeneous Graph Neural Network via Topology and Feature Reconstruction.

.- Cooperative Perception and Decision-Making in Internet of Vehicles: A Comprehensive Review of Federated Learning and Blockchain Technology.

.- ETGuard: Malicious Encrypted Traffic Detection in Blockchain-based Power Grid Systems.

.- Self-Supervised Heterogeneous Graph Neural Network Based on Deep and Broad Neighborhood Encoding.

.- Batch Validation Scheme of Data Feature Requirement in Blockchain-based Data Trading Platform.

.- Research on business process representation based on graph convolutional neural network.

.- Membership Data Privacy Protection and Poisoning Detection Scheme for Federated Learning.

.- Code-based Blockchain Light Node Data Availability Guarantee Method.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.