Zhang / Wang / Liu | Adaptive Dynamic Programming for Control | Buch | 978-1-4471-5881-3 | sack.de

Buch, Englisch, 424 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6613 g

Reihe: Communications and Control Engineering

Zhang / Wang / Liu

Adaptive Dynamic Programming for Control

Algorithms and Stability
2013
ISBN: 978-1-4471-5881-3
Verlag: Springer

Algorithms and Stability

Buch, Englisch, 424 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6613 g

Reihe: Communications and Control Engineering

ISBN: 978-1-4471-5881-3
Verlag: Springer


There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods:
• infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences;
• finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control;
• nonlinear games for which  a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point.
Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium.
In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time:
• establishes the fundamental theory involved clearly with each chapter devoted to aclearly identifiable control paradigm;
• demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and
• shows how ADP methods can be put to use both in simulation and in real applications.
This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.
Zhang / Wang / Liu Adaptive Dynamic Programming for Control jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Optimal Stabilization Control for Discrete-time Systems.- Optimal Tracking Control for Discrete-time Systems.- Optimal Stabilization Control for Nonlinear Systems with Time Delays.- Optimal Tracking Control for Nonlinear Systems with Time-delays.- Optimal Feedback Control for Continuous-time Systems via ADP.- Several Special Optimal Feedback Control Designs Based on ADP.- Zero-sum Games for Discrete-time Systems Based on Model-free ADP.- Nonlinear Games for a Class of Continuous-time Systems Based on ADP.- Other Applications of ADP.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.