Zhang / Puchta / Thomson | Advances in New Technology for Targeted Modification of Plant Genomes | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 171 Seiten

Zhang / Puchta / Thomson Advances in New Technology for Targeted Modification of Plant Genomes


2015
ISBN: 978-1-4939-2556-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 171 Seiten

ISBN: 978-1-4939-2556-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Over the past 50 years, biotechnology has been the major driving force for increasing crop productivity. Particularly, advances in plant genetic engineering technologies have opened up vast new opportunities for plant researchers and breeders to create new crop varieties with desirable traits. Recent development of precise genome modification methods, such as targeted gene knock-out/knock-in and precise gene replacement, moves genetic engineering to another level and offers even more potentials for improving crop production. The work provides an overview of the latest advances on precise genomic engineering technologies in plants. Topics include recombinase and engineered nucleases-mediated targeted modification, negative/positive selection-based homologous recombination and oligo nucleotide-mediated recombination. Finally, challenges and impacts of the new technologies on present regulations for genetic modification organisms (GMOs) will be discussed.

Feng Zhang, Research Director, Cellectis plant sciences Holger Puchta, Professor, University of Karlsruhe James Thompson, Principle Investigator, USDA

Zhang / Puchta / Thomson Advances in New Technology for Targeted Modification of Plant Genomes jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;Contributors;8
3;Chapter 1: Double-Strand Break Repair and Its Application to Genome Engineering in Plants;10
3.1;1 DSB Induction as a Tool for Genome Manipulation in Plants;11
3.2;2 Mechanisms of DSB Repair Involving Homologous Sequences;12
3.3;3 The Chromosomal Site of the Template Makes a Difference;15
3.4;4 Extrachromosomal Templates;17
3.5;5 Factors Involved in Homologous Recombination;19
3.6;6 DSB Repair via Nonhomologous End Joining;21
3.7;7 From Gene Engineering to Genome Engineering: Inducing More Than One DSB at a Time;24
3.8;References;26
4;Chapter 2: Engineering Meganuclease for Precise Plant Genome Modification;30
4.1;1 Introduction;30
4.2;2 Engineering of Meganucleases for New Sequence Specificity;31
4.2.1;2.1 Yeast High-Throughput Screening Assay;32
4.2.2;2.2 Principle of the Two-Step Semi-rational Approach;33
4.3;3 Meganuclease Scaffold Optimization;35
4.3.1;3.1 Improvement of the Meganuclease Activity;35
4.3.2;3.2 Improvement of the Meganuclease Specificity;36
4.3.2.1;3.2.1 Obligatory Heterodimer;36
4.3.2.2;3.2.2 Single-Chain Molecule;37
4.3.2.3;3.2.3 Fusion HE-TALE;37
4.4;4 Factors Influencing the Meganuclease Activity In Vivo;38
4.4.1;4.1 Meganucleases Are Sensitive to Chromatin Compaction;38
4.4.2;4.2 Meganucleases Are Sensitive to CpG Methylation;38
4.4.3;4.3 Identification of Host Factors Regulating Homologous Gene Targeting;40
4.4.4;4.4 Increased Targeted Mutagenesis Frequency by Co-factors;40
4.5;5 Precise Plant Genome Modification with Meganucleases;41
4.6;6 Future Perspectives;43
4.7;References;44
5;Chapter 3: High Efficient Genome Modification by Designed Zinc Finger Nuclease;48
5.1;1 Introduction;48
5.2;2 Making and Testing ZFNs;49
5.3;3 Targeted Mutagenesis by ZFNs;53
5.4;4 Targeted Chromosomal Deletions and Inversions by ZFNs;54
5.5;5 Gene Replacement and Gene Stacking by ZFNs;54
5.6;6 Donor and/or ZFN Delivery;55
5.7;7 Cytotoxicity and Off-Targeting by ZFNs;56
5.8;8 Somatic Versus Germinal Modifications by ZFNs;56
5.9;9 Genetic Approaches to Facilitate High Frequency Genome Modifications;57
5.10;10 Future Perspective;58
5.11;References;58
6;Chapter 4: Engineered TAL Effector Proteins: Versatile Reagents for Manipulating Plant Genomes;63
6.1;1 Genome Editing Using TAL Effector Nuclease Technology;68
6.2;2 Methods to Engineer Novel TAL Effector Arrays;70
6.3;3 Modifying Genes Using TAL Effector Fusion Proteins;71
6.4;4 Optimizing TAL Effector Architecture;73
6.5;5 Factors Affecting DNA Binding;75
6.6;6 Conclusions;77
6.7;References;78
7;Chapter 5: Oligo-Mediated Targeted Gene Editing;81
7.1;1 Introduction;81
7.1.1;1.1 Gene Repair Oligonucleotide Structure;83
7.1.2;1.2 Delivery;84
7.1.3;1.3 RTDS Mechanism/Process;84
7.1.4;1.4 Application of RTDS;85
7.1.4.1;1.4.1 Targeting Acetohydroxyacid Synthase;85
7.1.4.2;1.4.2 Targeting Green Fluorescent Protein Transgenics;86
7.2;2 Materials and Methods;86
7.2.1;2.1 Oil Seed Rape AHAS;86
7.2.2;2.2 BFP to GFP Conversion in Arabidopsis;89
7.3;3 Results;89
7.3.1;3.1 Chromosomal Conversion;89
7.3.1.1;3.1.1 Oil Seed Rape AHAS;89
7.3.1.2;3.1.2 BFP to GFP Conversion in Arabidopsis;92
7.4;4 Discussion;93
7.5;References;95
8;Chapter 6: Gene Targeting in Crop Species with Effective Selection Systems;98
8.1;1 Introduction;99
8.2;2 General Background on Gene Targeting;100
8.3;3 Gene Targeting with Effective Selection Systems;105
8.4;4 Gene Targeting with Gene-Specific Selection;106
8.5;5 Gene Targeting with Positive–Negative Selection;106
8.5.1;5.1 Knockout and Knockin Targeting;109
8.5.2;5.2 Toward the Development of Desired Subtle and Localized Mutageneses;112
8.6;6 Future Prospects;114
8.7;References;115
9;Chapter 7: Recombinase Technology for Precise Genome Engineering;119
9.1;1 Introduction;120
9.2;2 Recombinase Types and Catalysis;121
9.3;3 Application: Excision;124
9.4;4 Application: Molecular Switches;127
9.5;5 Application: Transgene Insertion Site Resolution;128
9.6;6 Application: Integration;129
9.7;7 Application: Recombinase-Mediated Cassette Exchange;132
9.8;8 Application: Megabase Modifications/Chromosome Level Engineering;136
9.9;9 Conclusion: Benefits of Site-Specific Recombinase Technology and Future Directions;140
9.10;References;141
10;Chapter 8: Developing CRISPR Technology in Major Crop Plants;151
10.1;1 Introduction;151
10.2;2 Development of CRISPR Technology;152
10.2.1;2.1 The CRISPR/Cas Defense System;152
10.2.2;2.2 CRISPR Genome Engineering;153
10.2.3;2.3 Maximizing the Specificity of CRISPR;155
10.3;3 CRISPR Technology in Plants;156
10.3.1;3.1 Improving CRISPR Technology in Plants;156
10.3.2;3.2 Examples of Applications to Crop Plants;159
10.3.2.1;3.2.1 Rice;159
10.3.2.2;3.2.2 Wheat;161
10.3.2.3;3.2.3 Maize;161
10.4;4 Perspective and Conclusions;161
10.4.1;4.1 Developing CRISPR as a New Plant Breeding Technique for Next Generation Crop Improvement;161
10.4.2;4.2 Developing CRISPR for Regulating Plant Genomes;162
10.5;References;163
11;Index;166



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.