Zhang / Mousavi | Structural Health Monitoring Using Emerging Signal Processing Approaches with Artificial Intelligence Algorithms | Buch | 978-1-032-80613-6 | sack.de

Buch, Englisch, 244 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 517 g

Zhang / Mousavi

Structural Health Monitoring Using Emerging Signal Processing Approaches with Artificial Intelligence Algorithms


1. Auflage 2024
ISBN: 978-1-032-80613-6
Verlag: CRC Press

Buch, Englisch, 244 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 517 g

ISBN: 978-1-032-80613-6
Verlag: CRC Press


Structural health monitoring is a powerful tool across civil, mechanical, automotive, and aerospace engineering, allowing the assessment and measurement of physical parameters in real time. Processing changes in the vibration signals of a dynamic system can detect, locate, and quantify any damage existing in the system. This book presents a comprehensive state-of-the-art review of the applications in time, frequency, and time-frequency domains of signal-processing techniques for damage perception, localization, and quantification in various structural systems.

Experimental investigations are illustrated, including the development of a set of damage indices based on the signal features extracted through various signal-processing techniques to evaluate sensitivity in damage identification. Chapters summarize the application of the Hilbert–Huang transform based on three decomposition methods such as empirical mode decomposition, ensemble empirical mode decomposition, and complete ensemble empirical mode decomposition with adaptive noise. Also, the chapters assess the performance and sensitivity of different approaches, including multiple signal classification and empirical wavelet transform techniques in damage detection and quantification. Artificial neural networks for automated damage identification are introduced.

This book suits students, engineers, and researchers who are investigating structural health monitoring, signal processing, and damage identification of structures.

Zhang / Mousavi Structural Health Monitoring Using Emerging Signal Processing Approaches with Artificial Intelligence Algorithms jetzt bestellen!

Zielgruppe


Academic, Postgraduate, and Professional Reference

Weitere Infos & Material


1. Introduction.  2. Methodology and Approaches.  3. Implementation of the Proposed Approaches in Structural Damage Detection and Quantification.  4. Implementation of the Proposed Approaches in Structural Damage Localization.  5. Experimental Verification of the Proposed Artificial Neural Network Aided Approaches in Structural Damage Identification.  6. Conclusions.


Chunwei Zhang is a Chair Distinguished Professor at Shenyang University of Technology. He is the Founding Director of the Multidisciplinary Center for Infrastructure Engineering (MCIE) at Shenyang University of Technology, and of the Structural Vibration Control (SVC) Group at Qingdao University of Technology, China. His research achievement and worldwide impact have been highly recognized by the international academia society, as evidenced by the continuous inclusions into the prestigious rankings, such as the Clarivate Highly Cited Researcher, Elsevier Most Cited Chinese Researcher, and Stanford World Top 2% Scientists, among others. Apart from publications, his inventions have been implemented in the engineering practice as evidenced by the active control system for the Canton Tower structure. He is also a commended author of CRC Press published books and proceedings.

 

Asma A. Mousavi is a researcher at South China University of Technology.

.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.