Zhang / Liu / Wang | Controlling Chaos | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 344 Seiten

Reihe: Communications and Control Engineering

Zhang / Liu / Wang Controlling Chaos

Suppression, Synchronization and Chaotification
1. Auflage 2009
ISBN: 978-1-84882-523-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Suppression, Synchronization and Chaotification

E-Book, Englisch, 344 Seiten

Reihe: Communications and Control Engineering

ISBN: 978-1-84882-523-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rössler and Hénon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.

Zhang / Liu / Wang Controlling Chaos jetzt bestellen!

Weitere Infos & Material


1;Foreword;7
2;Preface;9
3;Contents;15
4;Chapter 1 Overview;20
4.1;1.1 The Origin and Development of Chaos Theory;20
4.2;1.2 Control of Chaos;22
4.3;1.3 Anticontrol of Chaos;29
4.4;1.4 Summary;31
4.5;References;32
5;Chapter 2 Preliminaries of Nonlinear Dynamics and Chaos;35
5.1;2.1 Introduction;35
5.2;2.2 Background;36
5.3;2.3 Existence, Uniqueness, Flow, and Dynamical Systems;38
5.4;2.4 Equilibrium, Periodic Orbit, Quasiperiodic Orbit, and Poincar´e Map;42
5.5;2.5 Invariant and Attracting Sets;47
5.6;2.6 Continuous-Time Systems in the Plane;49
5.7;2.7 General Solutions of Discrete-Time Linear Systems;55
5.8;2.8 Discrete-Time Systems in the Plane;56
5.9;2.9 Stabilities of Trajectories I: The Lyapunov First Method;61
5.10;2.10 Stabilities of Trajectories II: The Lyapunov Second Method;68
5.11;2.11 Chaotic Sets and Chaotic Attractors;71
5.12;2.12 Symbolic Dynamics and the Shift Map;72
5.13;2.13 Lyapunov Exponent;75
5.14;2.14 Examples;77
5.15;2.15 Basics of Functional Differential Equations Theory;89
5.16;2.16 Summary;93
5.17;References;94
6;Chapter 3 Entrainment and Migration Control of Chaotic Systems;95
6.1;3.1 Introduction;95
6.2;3.2 Basics on Entrainment and Migration;96
6.3;3.3 OPCL Control Scheme;102
6.4;3.4 Global Control of a Class of Continuous-Time Polynomial Chaotic Systems;103
6.5;3.5 Global Control of a Class of Discrete-Time Systems;113
6.6;3.6 Summary;119
6.7;References;120
7;Chapter 4 Feedback Control of Chaotic Systems;121
7.1;4.1 Introduction;121
7.2;4.2 Model-Reference Adaptive Control of a Class of Discrete-Time Chaotic Systems;122
7.3;4.3 Model-Reference Adaptive Control of a Class of Continuous-Time Chaotic Systems;129
7.4;4.4 Control of a Class of Chaotic Systems Based on Inverse Optimal Control;143
7.5;4.5 Summary;148
7.6;References;149
8;Chapter 5 Synchronizing Chaotic Systems Based on Feedback Control;150
8.1;5.1 Introduction;150
8.2;5.2 Synchronization of Continuous-Time Chaotic Systems with a Single Input;151
8.3;5.3 Synchronization of Multi-Signals in Continuous-Time Chaotic Systems;159
8.4;5.4 Synchronization of Different Continuous-Time Chaotic Systems;167
8.5;5.5 Synchronization of Discrete-Time Chaotic Systems;174
8.6;5.6 Summary;184
8.7;References;185
9;Chapter 6 Synchronizing Chaotic Systems via Impulsive Control;186
9.1;6.1 Introduction;186
9.2;6.2 Complete Synchronization of a Class of Chaotic Systems via Impulsive Control;187
9.3;6.3 Lag-Synchronization of the Unified Systems via Impulsive Control;197
9.4;6.4 Impulsive Synchronization of Different Chaotic Systems;204
9.5;6.5 Impulsive Synchronization of a Class of Chaotic Delayed Neural Networks;215
9.6;6.6 Summary;223
9.7;References;223
10;Chapter 7 Synchronization of Chaotic Systems with Time Delay;225
10.1;7.1 Introduction;225
10.2;7.2 Adaptive Synchronization of a Class of Delayed Chaotic Systems;226
10.3;7.3 Adaptive Synchronization Between Two Different Delayed Chaotic Systems;237
10.4;7.4 Synchronization of Chaotic Delayed Neural Networks;254
10.5;7.5 Summary;282
10.6;References;283
11;Chapter 8 Synchronizing Chaotic Systems Based on Fuzzy Models;284
11.1;8.1 Introduction;284
11.2;8.2 Modeling Chaotic Systems via T–S Fuzzy Models;285
11.3;8.3 Synchronization of Hyperchaotic Systems via T–S Fuzzy Models;292
11.4;8.4 Synchronizing Fuzzy Chaotic Systems with Time-Varying Delays;313
11.5;8.5 Summary;321
11.6;References;321
12;Chapter 9 Chaotification of Nonchaotic Systems;323
12.1;9.1 Introduction;323
12.2;9.2 Chaotification of Discrete-Time Fuzzy Hyperbolic Model with Uncertain Parameters;324
12.3;9.3 Chaotification of Continuous-Time Fuzzy Hyperbolic Model Using Impulsive Control;332
12.4;9.4 Chaotification of Linear Systems Using Sampled Data Control;341
12.5;9.5 Summary;353
12.6;References;354
13;Index;356



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.