Zhang / Li / Chen | Health Information Processing. Evaluation Track Papers | Buch | 978-981-964297-7 | sack.de

Buch, Englisch, 228 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Communications in Computer and Information Science

Zhang / Li / Chen

Health Information Processing. Evaluation Track Papers

10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings
Erscheinungsjahr 2025
ISBN: 978-981-964297-7
Verlag: Springer Nature Singapore

10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings

Buch, Englisch, 228 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-964297-7
Verlag: Springer Nature Singapore


This book constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, November 15–17, 2024.
The CHIP 2024 Evaluation Track proceedings include 19 full papers which were carefully reviewed and grouped into these topical sections: syndrome differentiation thought in Traditional Chinese Medicine; lymphoma information extraction and automatic coding; and typical case diagnosis consistency.

Zhang / Li / Chen Health Information Processing. Evaluation Track Papers jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Syndrome Differentiation Thought in Traditional Chinese Medicine.
.- Overview of the evaluation task for syndrome differentiation thought in traditional Chinese medicine in CHIP2024.
.- Traditional Chinese Medicine Case Analysis System for High-Level Semantic Abstraction: Optimized with Prompt and RAG.
.- A TCM Syndrome Differentiation Thinking Method Based on Chain of Thought and Knowledge Retrieval Augmentation.
.- Fine-Tuning Large Language Models for Syndrome Differentiation in Traditional Chinese Medicine.
.- Iterative Retrieval Augmentation for Syndrome Differentiation via Large Language Models.
.- Lymphoma Information Extraction and Automatic Coding.
.- Benchmark for Lymphoma Information Extraction and Automated Coding.
.- Overview of the Lymphoma Information Extraction and Automatic Coding Evaluation Task in CHIP 2024.
.- Automatic ICD Code Generation for Lymphoma Using Large Language Models.
.- Lymphoma Tumor Coding and Information Extraction: A Comparative Analysis of Large Language Model-based Methods.
.- Leveraging Chain of Thought for Automated Medical Coding of Lymphoma Cases.
.- Harnessing Retrieval-Augmented LLMs for Training-Free Tumor Coding Classification.
.- Hierarchical Information Extraction and Classification of Lymphoma Tumor Codes Based On LLM.
.- Typical Case Diagnosis Consistenc.
.- Benchmark of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- Overview of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- The Diagnosis of Typical Medical Cases through Optimized Fine-Tuning of Large Language Models.
.- Utilizing Large Language Models Enhanced by Chain-of-Thought for the Diagnosis of Typical Medical Cases.
.- Assessing Diagnostic Consistency in Clinical Cases: A Fine-Tuned LLM Voting and GPT Error Correction Framework.
.- Typical Medical Case Diagnosis with Voting and Answer Discrimination using Fine-tuned LLM.
.- Reliable Typical Case Diagnosis via Optimized Retrieval-Augmented Generation Techniques.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.