Zhang / Lee | Data Management | Buch | 978-1-009-12331-0 | sack.de

Buch, Englisch, 326 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 707 g

Zhang / Lee

Data Management


Erscheinungsjahr 2024
ISBN: 978-1-009-12331-0
Verlag: Cambridge University Press

Buch, Englisch, 326 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 707 g

ISBN: 978-1-009-12331-0
Verlag: Cambridge University Press


This guide illuminates the intricate relationship between data management, computer architecture, and system software. It traces the evolution of computing to today's data-centric focus and underscores the importance of hardware-software co-design in achieving efficient data processing systems with high throughput and low latency. The thorough coverage includes topics such as logical data formats, memory architecture, GPU programming, and the innovative use of ray tracing in computational tasks. Special emphasis is placed on minimizing data movement within memory hierarchies and optimizing data storage and retrieval. Tailored for professionals and students in computer science, this book combines theoretical foundations with practical applications, making it an indispensable resource for anyone wanting to master the synergies between data management and computing infrastructure.

Zhang / Lee Data Management jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


About the authors; Preface; 1. Introduction; 2. Data storage: physical allocation and logical format; 3. Main memory: the physical space; 4. Buffer replacement algorithms; 5. In-memory data processing in large data centers; 6. GPU computing: a new algorithm-to-architecture interaction; 7. GPU for structured data; 8. GPU for spatial data: a case study in pathology imaging applications; 9. Ray tracing hardware in GPUs for accelerated computation; 10. The future of computing – synergies in data management and system architecture; Bibliography; Index.


Zhang, Xiaodong
Xiaodong Zhang is Robert M. Critchfield Professor in Engineering and University Distinguished Scholar at the Ohio State University. He specializes in data management in computer and distributed systems. His influential research is broadly adopted in various sectors. Notably, he received the ACM MICRO Test of Time Award in 2020 and is a Fellow of both ACM and IEEE.

Lee, Rubao
Rubao Lee is a distinguished computer scientist who has made significant contributions to GPU-accelerated database systems and data processing. His innovations, like RCFile and YSmart, are widely adopted in industry. He received ICDCS's 2011 Best Paper Award and the Ohio State University's 2018 Lumley Research Award.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.