Zhang | An Introduction to Materials Informatics | Buch | 978-981-99-7991-2 | www2.sack.de

Buch, Englisch, 465 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 902 g

Zhang

An Introduction to Materials Informatics

The Elements of Machine Learning
1. Auflage 2024
ISBN: 978-981-99-7991-2
Verlag: Springer

The Elements of Machine Learning

Buch, Englisch, 465 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 902 g

ISBN: 978-981-99-7991-2
Verlag: Springer


This textbook educates current and future materials workers, engineers, and researchers on Materials Informatics. Volume I serves as an introduction, merging AI, ML, materials science, and engineering. It covers essential topics and algorithms in 11 chapters, including Linear Regression, Neural Networks, and more. Suitable for diverse fields like materials science, physics, and chemistry, it enables quick and easy learning of Materials Informatics for readers without prior AI and ML knowledge.

Zhang An Introduction to Materials Informatics jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1 Introduction

Chapter 2 Linear Regression

Chapter 3 Linear Classification

Chapter 4 Support Vector Machine

Chapter 5 Decision Tree and K-Nearest-Neighbors (KNN)

Chapter 6 Ensemble Learning

Chapter 7 Bayesian Theorem and Expectation-Maximization (EM) Algorithm

Chapter 8 Symbolic Regression

Chapter 9 Neural Networks

Chapter 10 Hidden Markov Chains

Chapter 11 Data Preprocessing and Feature Selection

Chapter 12 Interpretative SHAP Value and Partial Dependence Plot

Appendix 1 Vector and Matrix

Appendix 2 Basic Statistics


Tongyi Zhang, born in October 1949 in Zhengzhou, China, is Expert in the interdisciplinary area of materials science and engineering and solid mechanics. He received his Ph.D. in 1985 in materials physics from the University of Science and Technology Beijing, China. He was Research Fellow of the Alexander von Humboldt Foundation, 1986-1988, Germany; Postdoctoral Fellow, 1988-1990, University of Rochester; and Associate Research Scientist, 1990-1993, Yale University. From 1993 to 2015, he worked at the Hong Kong University of Science and Technology, as Lecturer, Associate Professor, Professor, Chair Professor, and Fang Professor of Engineering.  

He is the founding dean of Materials Genome Institute, Shanghai University, and the founding director of the Materials Genome Engineering division in the Chinese Materials Research Society (CMRS). Currently he is doing his best to promote Materials Genome Engineering and Materials/Mechanics Informatics, especially, materials AI labs, materials AI computations, and materials large multimodal model.  He is the Vice President of the International Congress on Fracture, the Honorary President of the Chinese Society for Corrosion and Protection, and was the Vice President of the Far East and Oceanic Fracture Society. He is the founding Editor-in-Chief of Journal of Materials Informatics and was the Editor-in-Chief of Science China Technological Sciences 2018-2022. He became Fellow of International Congress on Fracture in 2013, Fellow of the Hong Kong Academy of Engineering Sciences in 2012, Member of Chinese Academy of Sciences in 2011, Senior Research Fellow of Croucher Foundation, Hong Kong, in 2003, Fellow of ASM International, USA, in 2001. He received the awards including the 2018 Prize for Scientific and Technological Progress from the HLHL Foundation, the Second Prizes of 2007 and 1987 State Natural Science Award, China, and the 1988 National Award for Young Scientists, China.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.