Zhang | A Tour of Data Science | Buch | 978-0-367-89586-0 | sack.de

Buch, Englisch, 216 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 420 g

Reihe: Chapman & Hall/CRC Data Science Series

Zhang

A Tour of Data Science

Learn R and Python in Parallel
1. Auflage 2014
ISBN: 978-0-367-89586-0
Verlag: Chapman and Hall/CRC

Learn R and Python in Parallel

Buch, Englisch, 216 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 420 g

Reihe: Chapman & Hall/CRC Data Science Series

ISBN: 978-0-367-89586-0
Verlag: Chapman and Hall/CRC


A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source.

Key features:

- Allows you to learn R and Python in parallel

- Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas

- Provides a concise and accessible presentation

- Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc.

Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.

Zhang A Tour of Data Science jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


Assumptions about the reader’s background
Book overview

Introduction to R/Python Programming

Calculator

Variable and Type
Functions

Control flows
Some built-in data structures

Revisit of variables

Object-oriented programming (OOP) in R/Python

Miscellaneous

More on R/Python Programming

Work with R/Python scripts

Debugging in R/Python

Benchmarking

Vectorization

Embarrassingly parallelism in R/Python

Evaluation strategy
Speed up with C/C++ in R/Python
A first impression of functional programming Miscellaneous

data.table and pandas
SQL

Get started with data.table and pandas

Indexing & selecting data

Add/Remove/Update
Group by

Join

Random Variables, Distributions & Linear Regression

A refresher on distributions

Inversion sampling & rejection sampling

Joint distribution & copula

Fit a distribution

Confidence interval
Hypothesis testing

Basics of linear regression

Ridge regression

Optimization in Practice
Convexity

Gradient descent

Root-finding

General purpose minimization tools in R/Python

Linear programming

Miscellaneous

Machine Learning - A gentle introduction

Supervised learning

Gradient boosting machine

Unsupervised learning

Reinforcement learning

Deep Q-Networks

Computational differentiation

Miscellaneous


Nailong Zhang is lead Data Scientist at Mass Mutual Life Insurance Company.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.