Zhan | Deep-Learning-Assisted Statistical Methods with Examples in R | Buch | 978-1-041-15843-1 | sack.de

Buch, Englisch, 186 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Chapman & Hall/CRC Data Science Series

Zhan

Deep-Learning-Assisted Statistical Methods with Examples in R


1. Auflage 2026
ISBN: 978-1-041-15843-1
Verlag: CRC Press

Buch, Englisch, 186 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Chapman & Hall/CRC Data Science Series

ISBN: 978-1-041-15843-1
Verlag: CRC Press


This book explores how deep learning enhances statistical methods for hypothesis testing, point estimation, optimization, interpretation, and other aspects. It uniquely demonstrates leveraging deep learning to improve traditional statistical approaches, showcasing their superior performance in practical applications. Each topic includes essential background, clear method explanations, and detailed R code demonstrations through case studies. This allows readers to directly apply these methods to their own challenges and easily adapt the underlying principles to related problems.

This book delves into statistical inference, introducing advanced strategies for hypothesis testing and point estimation. These innovative methods ingeniously combine both artificial and human intelligence, offering robust solutions for scenarios where traditional optimal analytical solutions are elusive or non-existent. A prime example of their real-world impact is in adaptive clinical trials, where these computational approaches can be readily implemented to optimize trial design and outcomes. The author further explores the multifaceted benefits of deep-learning-assisted statistical methods, extending beyond mere statistical efficiency. It highlights crucial features such as integrity protection, ensuring the trustworthiness of results; computational efficiency, enabling faster and more scalable analyses; and interpretability, which is increasingly vital for transparent communication of complex findings in modern statistics. This section encourages readers to consider a broader spectrum of improvements for new statistical methods, focusing on attributes that enhance their practical utility and societal relevance. Finally, the reader is given a critical examination of the limitations and potential concerns associated with the methods presented in earlier chapters. Crucially, it doesn't just identify these issues but also offers constructive mitigation approaches. This equips readers with essential techniques to safeguard AI-based methodologies with their scientific expertise, ensuring responsible and valid application of these powerful computational tools in diverse scientific and practical domains.

This book is a valuable resource for students, practitioners, and researchers integrating statistics and data science techniques to solve impactful real-world problems.

Zhan Deep-Learning-Assisted Statistical Methods with Examples in R jetzt bestellen!

Zielgruppe


Postgraduate, Professional Reference, and Undergraduate Advanced


Autoren/Hrsg.


Weitere Infos & Material


I Introduction and Preparations 1. Introduction to Deep Neural Networks (DNNs) II Statistical Inference 2. Two-sample Parametric Hypothesis Testing 3. Point Estimation III Numerical Methods 4. Protect Integrity and Save Computational Time 5. Interpretable Models in Regression Analysis IV Extensions 6. Substitutions of Other Methods for DNN 7. Interpretable Models in Regression Analysis 8. Substitutions of Other Methods for DNN 9. Limitations and Mitigations 10. Some Future Works


Tianyu Zhan is a Director at AbbVie Inc. He obtained his Ph.D. in Biostatistics from the University of Michigan Ann Arbor in 2017. His research interests are closely related to late-phase clinical trials. He has been actively promoting innovative clinical trial designs and advanced analysis methods at AbbVie, resulting in significant business impacts.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.