Buch, Englisch, 102 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 189 g
Reihe: Wireless Networks
Buch, Englisch, 102 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 189 g
Reihe: Wireless Networks
ISBN: 978-3-319-79666-6
Verlag: Springer International Publishing
This book introduces two basic big data processing paradigms for batch data and streaming data. Representative programming frameworks are also presented, as well as software defined networking (SDN) and network function virtualization (NFV) technologies as key cloud networking technologies.
The authors illustrate that SDN and NFV can be applied to benefit the big data processing by proposing a cloud networking framework. Based on the framework, two case studies examine how to improve the cost efficiency of big data processing.
Cloud Networking for Big Data
targets professionals and researchers working in big data, networks, wireless communications and information technology. Advanced-level students studying computer science and electrical engineering will also find this book valuable as a study guide.Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Cloud-Computing, Grid-Computing
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Drahtlostechnologie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Mobilfunk- und Drahtlosnetzwerke & Anwendungen
Weitere Infos & Material
Networking Evolution towards Cloud Networking.- Background Introduction.- Fundamental Concepts.- Cloud Networking.- Cost Efficient Big Data Processing in Cloud Networking enabled Data Centers.- Cost Minimization for Big Data Processing in Geo-Distributed Data Centers.- A General Communication Cost Optimization Framework for Big Data Stream Processing in Geo-distributed Data Centers.- Conclusion and Future Work.