Zemanian | Pristine Transfinite Graphs and Permissive Electrical Networks | Buch | 978-1-4612-6641-9 | sack.de

Buch, Englisch, 183 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 312 g

Zemanian

Pristine Transfinite Graphs and Permissive Electrical Networks


Softcover Nachdruck of the original 1. Auflage 2001
ISBN: 978-1-4612-6641-9
Verlag: Birkhäuser Boston

Buch, Englisch, 183 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 312 g

ISBN: 978-1-4612-6641-9
Verlag: Birkhäuser Boston


A transfinite graph or electrical network of the first rank is

obtained conceptually by connecting conventionally infinite graphs and

networks together at their infinite extremities. This process can be

repeated to obtain a hierarchy of transfiniteness whose ranks increase

through the countable ordinals. This idea, which is of recent origin,

has enriched the theories of graphs and networks with radically new

constructs and research problems.

The book provides a more accessible introduction to the subject that,

though sacrificing some generality, captures the essential ideas of

transfiniteness for graphs and networks. Thus, for example, some

results concerning discrete potentials and random walks on transfinite

networks can now be presented more concisely. Conversely, the

simplifications enable the development of many new results that were

previously unavailable.

Topics and features: *A simplified exposition provides an introduction

to transfiniteness for graphs and networks.*Various results for

conventional graphs are extended transfinitely. *Minty's powerful

analysis of monotone electrical networks is also extended

transfinitely.*Maximum principles for node voltages in linear

transfinite networks are established. *A concise treatment of random

walks on transfinite networks is developed. *Conventional theory is

expanded with radically new constructs.

Mathematicians, operations researchers and electrical engineers, in

particular, graph theorists, electrical circuit theorists, and

probabalists will find an accessible exposition of an advanced

subject.

Zemanian Pristine Transfinite Graphs and Permissive Electrical Networks jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 1.1 Notations and Terminology.- 1.2 Transfinite Nodes and Graphs.- 1.3 A Need for Transfiniteness.- 1.4 Pristine Graphs.- 2 Pristine Transfinite Graphs.- 2.1 0-Graphs and 1-Graphs.- 2.2 ?-Graphs and (? + 1)-Graphs.- 2.3 $$ \mathop{\omega }\limits^{ \to } $$-Graphs and ?-Graphs.- 2.4 Transfinite Graphs of Higher Ranks.- 3 Some Transfinite Graph Theory.- 3.1 Nondisconnectable Tips and Connectedness.- 3.2 Sections.- 3.3 Transfinite Versions of König’s Lemma.- 3.4 Countable Graphs.- 3.5 Locally Finite Graphs.- 3.6 Transfinite Ends.- 4 Permissive Transfinite Networks.- 4.1 Linear Electrical Networks.- 4.2 Permissive 1-Networks.- 4.3 The 1-Metric.- 4.4 The Recursive Assumptions.- 4.5 Permissive (? + l)-Networks.- 4.6 Permissive Networks of Ranks $$ \mathop{\omega }\limits^{ \to } $$, ?, and Higher.- 5 Linear Networks; Tellegen Regimes.- 5.1 A Tellegen-Type Fundamental Theorem.- 5.2 Node Voltages.- 5.3 Transfinite Current Flows—Some Ideas.- 5.4 Current Flows at Natural-Number Ranks.- 5.5 Current Flows at the Rank ?.- 6 Monotone Networks; Kirchhoff Regimes.- 6.1 Some Assumptions.- 6.2 Minty’s Colored-Graph Theorem.- 6.3 Wolaver’s No-Gain Property.- 6.4 Duffin’s Theorem on Operating Points.- 6.5 The Minty-Calvert Theorem.- 6.6 Potentials and Branch Voltages.- 6.7 Existence of a Potential.- 6.8 Existence of an Operating Point.- 6.9 Uniqueness of an Operating Point.- 6.10 Monotones ?-Networks.- 6.11 Reconciling Two Theories.- 7 Some Maximum Principles.- 7.1 Input Resistance Matrices.- 7.2 Some Maximum Principles for Node Voltages.- 8 Transfinite Random Walks.- 8.1 The Nash-Williams Rule.- 8.2 Transfinite Walks.- 8.3 Transfiniteness for Random Walks.- 8.4 Reaching a Bordering Node.- 8.5 Leaving a Bordering Node.- 8.6 Transitions for AdjacentBordering Nodes.- 8.7 Wandering on a v-Network.- References.- Index of Symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.