Zeimpekis / Tarantilis / Giaglis | Dynamic Fleet Management | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 38, 242 Seiten

Reihe: Operations Research/Computer Science Interfaces Series

Zeimpekis / Tarantilis / Giaglis Dynamic Fleet Management

Concepts, Systems, Algorithms & Case Studies
1. Auflage 2007
ISBN: 978-0-387-71722-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Concepts, Systems, Algorithms & Case Studies

E-Book, Englisch, Band 38, 242 Seiten

Reihe: Operations Research/Computer Science Interfaces Series

ISBN: 978-0-387-71722-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on real time management of distribution systems, integrating the latest results in system design, algorithm development and system implementation to capture the state-of-the art research and application trends. The book important topics such as goods dispatching, couriers, rescue and repair services, taxi cab services, and more. The book includes real-life case studies that describe the solution to actual distribution problems by combining systemic and algorithmic approaches.

Zeimpekis / Tarantilis / Giaglis Dynamic Fleet Management jetzt bestellen!

Weitere Infos & Material


1;TABLE OF CONTENTS;7
2;PREFACE;9
2.1;ACKNOWLEDGMENTS;14
3;Chapter 1 PLANNED ROUTE OPTIMIZATION FOR REAL- TIME VEHICLE ROUTING;15
3.1;1.1 INTRODUCTION;15
3.2;1.2 ADAPTATION OF STATIC ALGORITHMS;18
3.2.1;1.2.1 Many-to-one (One-to-many) Problems;19
3.2.1.1;1.2.1.1 Local update procedures;19
3.2.1.2;1.2.1.2 Reoptimization procedures;20
3.2.2;1.2.2 Many-to-many Problems;22
3.2.2.1;1.2.2.1 Local update procedures;22
3.2.2.2;1.2.2.2 Reoptimization procedures;22
3.2.3;1.2.3 Multiple Plan Approach (MPA);24
3.3;1.3 DIVERSION;24
3.4;1.4 ANTICIPATION OF FUTURE REQUESTS;26
3.4.1;1.4.1 Double Horizon;26
3.4.2;1.4.2 Waiting Strategies;26
3.4.3;1.4.3 Fruitful Regions;28
3.4.4;1.4.4 Multiple Scenario Approach (MSA);28
3.5;1.5 CONCLUSION;28
3.6;ACKNOWLEDGEMENTS;30
3.7;REFERENCES;30
4;Chapter 2 CLASSIFICATION OF DYNAMIC VEHICLE ROUTING SYSTEMS;33
4.1;2.1 INTRODUCTION;33
4.2;2.2 THE DYNAMIC VEHICLE ROUTING PROBLEM;35
4.3;2.3 STATIC VERSUS DYNAMIC VEHICLE ROUTING;37
4.4;2.4 THE DEGREE OF DYNAMISM;40
4.4.1;2.4.1 Dynamism Without Time Windows;41
4.4.1.1;2.4.1.1 The degree of dynamism;41
4.4.1.2;2.4.1.2 Effective Degree of Dynamism - EDOD;43
4.4.2;2.4.2 Dynamism and Time Windows;43
4.4.3;2.4.3 Effective Degree of Dynamism – EDOD-TW;44
4.5;2.5 MEASURING THE PERFORMANCE OF DVRP’S;45
4.5.1;2.5.1 Competitive Analysis;46
4.5.2;2.5.2 Determining the Objectives;47
4.6;2.6 THREE-ECHELON FRAMEWORK FOR DVRP’s;48
4.6.1;2.6.1 Echelon I – Weakly Dynamic Systems;48
4.6.2;2.6.2 Echelon II – Moderately Dynamic Systems;49
4.6.3;2.6.3 Echelon III – Strongly Dynamic Systems;50
4.6.4;2.6.4 System Classification;51
4.7;2.7 CONCLUDING REMARKS;53
4.8;REFERENCES;53
5;Chapter 3 DYNAMIC AND STOCHASTIC VEHICLE ROUTING IN PRACTICE;55
5.1;3.1 INTRODUCTION;55
5.2;3.2 THE DYNAMIC AND STOCHASTIC VEHICLE ROUTING PROBLEM;56
5.3;3.3 APPLICATION EXAMPLES;59
5.4;3.4 A FORMAL DESCRIPTION OF DYNAMIC AND STOCHASTIC VRPS;61
5.5;3.5 A DYNAMIC AND STOCHASTIC VRP SOLVER;63
5.5.1;3.5.1 Overall Architecture;63
5.5.2;3.5.2 Requirements;65
5.5.3;3.5.3 The SPIDER DSVRP Solver;67
5.6;3.6 A ROBUST APPROACH TO DYNAMIC AND STOCHASTIC VRPS;68
5.7;3.7 LEARNING EVENT MODELS;71
5.7.1;3.7.1 Bayesian Networks;72
5.7.2;3.7.2 Modeling of Stochastic VRP Events;73
5.8;3.8 CONCLUSIONS AND FURTHER RESEARCH;75
5.9;REFERENCES;75
6;Chapter 4 A PARALLELIZABLE AND APPROXIMATE DYNAMIC PROGRAMMING- BASED DYNAMIC FLEET MANAGEMENT MODEL WITH RANDOM TRAVEL TIMES AND MULTIPLE VEHICLE TYPES;78
6.1;4.1 INTRODUCTION AND RELEVANT LITERATURE;78
6.2;4.2 PROBLEM DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION;82
6.3;4.3 MODEL FORMULATION;83
6.3.1;4.3.1 Deterministic Travel Times Times Times Times Times Times Times;83
6.3.2;4.3.2 Random Travel Times;85
6.4;4.4 STRUCTURE OF THE APPROXIMATE SUBPROBLEMS AND PARALLELIZATION PARALLELIZATION PARALLELIZATION;88
6.5;4.5 CHARACTERIZING THE ARRIVAL RANDOM VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES;93
6.6;4.6 UPDATING AND IMPROVING THE VALUE FUNCTION APPROXIMATIONS;94
6.7;4.7 COMPUTATIONAL EXPERIMENTS;98
6.7.1;4.7.1 Experimental Setup;98
6.7.2;4.7.2 Computational Results Results;101
6.8;4.8 CONCLUSIONS AND RESEARCH PROSPECTS;104
6.9;REFERENCES;105
7;Chapter 5 INTEGRATED MODEL FOR THE DYNAMIC ON- DEMAND AIR TRANSPORTATION OPERATIONS;107
7.1;5.1 INTRODUCTION;107
7.2;5.2 BACKGROUND AND LITERATURE SURVEY;108
7.2.1;5.2.1 Background of the Problem;109
7.2.2;5.2.2 Previous Work;110
7.3;5.3 THE INTEGRATED MODEL;111
7.3.1;5.3.1 Crew Network and Crew Reassignment;112
7.3.2;5.3.2 The Fleet-station Time Line;114
7.3.3;5.3.3 The Model Formulation;115
7.3.4;5.3.4 Solution Algorithm;116
7.3.5;5.3.5 Dynamic Plan Adjustment to Handle Uncertainty;118
7.3.5.1;5.3.5.1 Demand uncertainty;119
7.3.5.2;5.3.5.2 Uncertainty on aircraft availability;119
7.4;5.4 COMPUTATIONAL EXPERIMENTS;120
7.4.1;5.4.1 New Demand without Time Window;120
7.4.2;5.4.2 New Demand with Time Window;122
7.5;5.5 CONCLUSIONS;122
7.6;REFERENCES;123
8;Chapter 6 AN INTERMODAL TIME-DEPENDENT MINIMUM COST PATH ALGORITHM;124
8.1;With an Application to Hazmat Routing;124
8.2;6.1 INTRODUCTION;124
8.3;6.2 BACKGROUND;126
8.3.1;6.2.1 Shortest Path Algorithms;127
8.3.2;6.2.2 Hazmat Transportation Problem;128
8.4;6.3 PROBLEM FORMULATION FORMULATION;129
8.5;6.4 ALGORITHM AND PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES;132
8.6;6.5 EXTENSION OF THE TDIMCP ALGORITHM TO MINIMUM RISK HAZMAT ROUTING ROUTING ROUTING ROUTING ROUTING ROUTING ROUTING;136
8.7;6.6 NUMERICAL TESTS OF HAZMAT ROUTING PROBLEM;138
8.8;6.7 CONCLUDING REMARKS;141
8.9;REFERENCES;142
9;Chapter 7 REAL- TIME EMERGENCY RESPONSE FLEET DEPLOYMENT: CONCEPTS, SYSTEMS, SIMULATION & CASE STUDIES;144
9.1;7.1 INTRODUCTION;144
9.2;7.2 AN INTEGRATED EMERGENCY VEHICLE FLEET MANAGEMENT SYSTEM;146
9.3;7.3 PROBLEM STATEMENT;148
9.4;7.4 LITERATURE REVIEW;151
9.5;7.5 SIMULATION;154
9.5.1;7.5.1 Emergency Module;155
9.5.2;7.5.2 Vehicle Module;156
9.5.3;7.5.3 Optimizer Module;156
9.5.4;7.5.4 Calibration of Simulation Model;156
9.5.5;7.5.5 Output Analysis;156
9.6;7.6 MATHEMATICAL MODEL;157
9.7;7.6.1 Notation;157
9.7.1;7.6.2 Mathematical Model;160
9.7.2;7.6.3 Cost of Travel Time;162
9.7.3;7.6.4 Coverage Rate Rate;162
9.7.4;7.6.5 Penalty Associated with the Coverage Deficiency;163
9.8;7.7 CASE STUDY;163
9.8.1;7.7.1 Comparison of Dispatching Strategies;164
9.8.2;7.7.2 Computation Time;165
9.8.3;7.7.3 Comparison of Shortest Path Algorithms on Average Response Time ( ART);166
9.8.4;7.7.4 Impact of Penalty Coefficients;166
9.8.5;7.7.5 Impact of Location Plans of Station;167
9.9;7.8 CONCLUSIONS AND FUTURE RESEARCH;170
9.10;REFERENCES;170
10;Chapter 8 VEHICLE ROUTING AND SCHEDULING MODELS, SIMULATION AND CITY LOGISTICS;174
10.1;8.1 INTRODUCTION;175
10.2;8.2 CONCEPTUAL APPROACH TO A DECISION SUPPORT SYSTEM FOR THE DESIGN AND EVALUATION OF CITY LOGISTIC APPLICATIONS;178
10.3;8.3 AIMSUN MICROSCOPIC TRAFFIC SIMULATOR AND CITY LOGISTICS;184
10.4;8.4 VEHICLE ROUTING AND SCHEDULING MODELS AND CITY LOGISTICS;186
10.4.1;8.4.1 Automatic Vehicle Routing Formulation;190
10.4.2;8.4.2 Dealing with the Appropriate Time Dependent Travel Times;192
10.5;8.5 COMBINING VEHICLE ROUTING WITH AIMSUN SIMULATION;193
10.6;8.6 TWO CASE STUDIES;196
10.6.1;8.6.1 The Lucca Case;198
10.6.2;8.6.2 Piacenza Case;200
10.7;8.7 CONCLUSIONS;203
10.8;8.8 ACKNOWLEDGEMENTS;204
10.9;REFERENCES;204
11;Chapter 9 DYNAMIC MANAGEMENT OF A DELAYED DELIVERY VEHICLE IN A CITY LOGISTICS ENVIRONMENT;207
11.1;9.1 DISTRIBUTION IN A CITY LOGISTICS ENVIRONMENT;207
11.2;9.2 USER REQUIREMENTS AND SYSTEM DESCRIPTION;209
11.3;9.3 MANAGING A DELAYED DISTRIBUTION VEHICLE;212
11.3.1;9.3.1 Monitoring and Detection;213
11.3.2;9.3.2 Decision Making and Rerouting;214
11.4;9.4 SYSTEM EVALUATION;217
11.5;9.5 CONCLUSIONS;223
11.6;ACKNOWLEDGMENTS;224
11.7;REFERENCES;224
11.8;APPENDIX A;226
12;Chapter 10 REAL- TIME FLEET MANAGEMENT AT ECOURIER LTD;228
12.1;10.1 INTRODUCTION;228
12.2;10.2 THE AUTOMATED INFORMATION-BASED ALLOCATION SYSTEM;229
12.2.1;10.2.1 Zoning the Service Territory;230
12.2.2;10.2.2 Time Subdivision;231
12.2.3;10.2.3 Forecasting Logistics Requirements;232
12.2.3.1;10.2.3.1 Demand forecasting;233
12.2.3.2;10.2.3.2 Travel time forecasting;234
12.2.4;10.2.4 On Line and Off Line Procedures;238
12.2.4.1;10.2.4.1 Initialization;238
12.2.4.2;10.2.4.2 Allocating couriers;239
12.2.4.3;10.2.4.3 The ALLOCATE module;239
12.2.4.4;10.2.4.4 The allocation procedure;241
12.2.4.5;10.2.4.5 The fast insertion procedure;242
12.2.4.6;10.2.4.6 The background optimization procedure;243
12.2.5;10.2.5 Parallelization Strategy;243
12.3;10.3 LITERATURE REVIEW;243
12.4;10.4 CONCLUSIONS;245
12.5;REFERENCES;246
13;INDEX;248



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.