E-Book, Englisch, Band 38, 242 Seiten
Reihe: Operations Research/Computer Science Interfaces Series
Zeimpekis / Tarantilis / Giaglis Dynamic Fleet Management
1. Auflage 2007
ISBN: 978-0-387-71722-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Concepts, Systems, Algorithms & Case Studies
E-Book, Englisch, Band 38, 242 Seiten
Reihe: Operations Research/Computer Science Interfaces Series
ISBN: 978-0-387-71722-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on real time management of distribution systems, integrating the latest results in system design, algorithm development and system implementation to capture the state-of-the art research and application trends. The book important topics such as goods dispatching, couriers, rescue and repair services, taxi cab services, and more. The book includes real-life case studies that describe the solution to actual distribution problems by combining systemic and algorithmic approaches.
Autoren/Hrsg.
Weitere Infos & Material
1;TABLE OF CONTENTS;7
2;PREFACE;9
2.1;ACKNOWLEDGMENTS;14
3;Chapter 1 PLANNED ROUTE OPTIMIZATION FOR REAL- TIME VEHICLE ROUTING;15
3.1;1.1 INTRODUCTION;15
3.2;1.2 ADAPTATION OF STATIC ALGORITHMS;18
3.2.1;1.2.1 Many-to-one (One-to-many) Problems;19
3.2.1.1;1.2.1.1 Local update procedures;19
3.2.1.2;1.2.1.2 Reoptimization procedures;20
3.2.2;1.2.2 Many-to-many Problems;22
3.2.2.1;1.2.2.1 Local update procedures;22
3.2.2.2;1.2.2.2 Reoptimization procedures;22
3.2.3;1.2.3 Multiple Plan Approach (MPA);24
3.3;1.3 DIVERSION;24
3.4;1.4 ANTICIPATION OF FUTURE REQUESTS;26
3.4.1;1.4.1 Double Horizon;26
3.4.2;1.4.2 Waiting Strategies;26
3.4.3;1.4.3 Fruitful Regions;28
3.4.4;1.4.4 Multiple Scenario Approach (MSA);28
3.5;1.5 CONCLUSION;28
3.6;ACKNOWLEDGEMENTS;30
3.7;REFERENCES;30
4;Chapter 2 CLASSIFICATION OF DYNAMIC VEHICLE ROUTING SYSTEMS;33
4.1;2.1 INTRODUCTION;33
4.2;2.2 THE DYNAMIC VEHICLE ROUTING PROBLEM;35
4.3;2.3 STATIC VERSUS DYNAMIC VEHICLE ROUTING;37
4.4;2.4 THE DEGREE OF DYNAMISM;40
4.4.1;2.4.1 Dynamism Without Time Windows;41
4.4.1.1;2.4.1.1 The degree of dynamism;41
4.4.1.2;2.4.1.2 Effective Degree of Dynamism - EDOD;43
4.4.2;2.4.2 Dynamism and Time Windows;43
4.4.3;2.4.3 Effective Degree of Dynamism – EDOD-TW;44
4.5;2.5 MEASURING THE PERFORMANCE OF DVRP’S;45
4.5.1;2.5.1 Competitive Analysis;46
4.5.2;2.5.2 Determining the Objectives;47
4.6;2.6 THREE-ECHELON FRAMEWORK FOR DVRP’s;48
4.6.1;2.6.1 Echelon I – Weakly Dynamic Systems;48
4.6.2;2.6.2 Echelon II – Moderately Dynamic Systems;49
4.6.3;2.6.3 Echelon III – Strongly Dynamic Systems;50
4.6.4;2.6.4 System Classification;51
4.7;2.7 CONCLUDING REMARKS;53
4.8;REFERENCES;53
5;Chapter 3 DYNAMIC AND STOCHASTIC VEHICLE ROUTING IN PRACTICE;55
5.1;3.1 INTRODUCTION;55
5.2;3.2 THE DYNAMIC AND STOCHASTIC VEHICLE ROUTING PROBLEM;56
5.3;3.3 APPLICATION EXAMPLES;59
5.4;3.4 A FORMAL DESCRIPTION OF DYNAMIC AND STOCHASTIC VRPS;61
5.5;3.5 A DYNAMIC AND STOCHASTIC VRP SOLVER;63
5.5.1;3.5.1 Overall Architecture;63
5.5.2;3.5.2 Requirements;65
5.5.3;3.5.3 The SPIDER DSVRP Solver;67
5.6;3.6 A ROBUST APPROACH TO DYNAMIC AND STOCHASTIC VRPS;68
5.7;3.7 LEARNING EVENT MODELS;71
5.7.1;3.7.1 Bayesian Networks;72
5.7.2;3.7.2 Modeling of Stochastic VRP Events;73
5.8;3.8 CONCLUSIONS AND FURTHER RESEARCH;75
5.9;REFERENCES;75
6;Chapter 4 A PARALLELIZABLE AND APPROXIMATE DYNAMIC PROGRAMMING- BASED DYNAMIC FLEET MANAGEMENT MODEL WITH RANDOM TRAVEL TIMES AND MULTIPLE VEHICLE TYPES;78
6.1;4.1 INTRODUCTION AND RELEVANT LITERATURE;78
6.2;4.2 PROBLEM DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION;82
6.3;4.3 MODEL FORMULATION;83
6.3.1;4.3.1 Deterministic Travel Times Times Times Times Times Times Times;83
6.3.2;4.3.2 Random Travel Times;85
6.4;4.4 STRUCTURE OF THE APPROXIMATE SUBPROBLEMS AND PARALLELIZATION PARALLELIZATION PARALLELIZATION;88
6.5;4.5 CHARACTERIZING THE ARRIVAL RANDOM VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES VARIABLES;93
6.6;4.6 UPDATING AND IMPROVING THE VALUE FUNCTION APPROXIMATIONS;94
6.7;4.7 COMPUTATIONAL EXPERIMENTS;98
6.7.1;4.7.1 Experimental Setup;98
6.7.2;4.7.2 Computational Results Results;101
6.8;4.8 CONCLUSIONS AND RESEARCH PROSPECTS;104
6.9;REFERENCES;105
7;Chapter 5 INTEGRATED MODEL FOR THE DYNAMIC ON- DEMAND AIR TRANSPORTATION OPERATIONS;107
7.1;5.1 INTRODUCTION;107
7.2;5.2 BACKGROUND AND LITERATURE SURVEY;108
7.2.1;5.2.1 Background of the Problem;109
7.2.2;5.2.2 Previous Work;110
7.3;5.3 THE INTEGRATED MODEL;111
7.3.1;5.3.1 Crew Network and Crew Reassignment;112
7.3.2;5.3.2 The Fleet-station Time Line;114
7.3.3;5.3.3 The Model Formulation;115
7.3.4;5.3.4 Solution Algorithm;116
7.3.5;5.3.5 Dynamic Plan Adjustment to Handle Uncertainty;118
7.3.5.1;5.3.5.1 Demand uncertainty;119
7.3.5.2;5.3.5.2 Uncertainty on aircraft availability;119
7.4;5.4 COMPUTATIONAL EXPERIMENTS;120
7.4.1;5.4.1 New Demand without Time Window;120
7.4.2;5.4.2 New Demand with Time Window;122
7.5;5.5 CONCLUSIONS;122
7.6;REFERENCES;123
8;Chapter 6 AN INTERMODAL TIME-DEPENDENT MINIMUM COST PATH ALGORITHM;124
8.1;With an Application to Hazmat Routing;124
8.2;6.1 INTRODUCTION;124
8.3;6.2 BACKGROUND;126
8.3.1;6.2.1 Shortest Path Algorithms;127
8.3.2;6.2.2 Hazmat Transportation Problem;128
8.4;6.3 PROBLEM FORMULATION FORMULATION;129
8.5;6.4 ALGORITHM AND PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES;132
8.6;6.5 EXTENSION OF THE TDIMCP ALGORITHM TO MINIMUM RISK HAZMAT ROUTING ROUTING ROUTING ROUTING ROUTING ROUTING ROUTING;136
8.7;6.6 NUMERICAL TESTS OF HAZMAT ROUTING PROBLEM;138
8.8;6.7 CONCLUDING REMARKS;141
8.9;REFERENCES;142
9;Chapter 7 REAL- TIME EMERGENCY RESPONSE FLEET DEPLOYMENT: CONCEPTS, SYSTEMS, SIMULATION & CASE STUDIES;144
9.1;7.1 INTRODUCTION;144
9.2;7.2 AN INTEGRATED EMERGENCY VEHICLE FLEET MANAGEMENT SYSTEM;146
9.3;7.3 PROBLEM STATEMENT;148
9.4;7.4 LITERATURE REVIEW;151
9.5;7.5 SIMULATION;154
9.5.1;7.5.1 Emergency Module;155
9.5.2;7.5.2 Vehicle Module;156
9.5.3;7.5.3 Optimizer Module;156
9.5.4;7.5.4 Calibration of Simulation Model;156
9.5.5;7.5.5 Output Analysis;156
9.6;7.6 MATHEMATICAL MODEL;157
9.7;7.6.1 Notation;157
9.7.1;7.6.2 Mathematical Model;160
9.7.2;7.6.3 Cost of Travel Time;162
9.7.3;7.6.4 Coverage Rate Rate;162
9.7.4;7.6.5 Penalty Associated with the Coverage Deficiency;163
9.8;7.7 CASE STUDY;163
9.8.1;7.7.1 Comparison of Dispatching Strategies;164
9.8.2;7.7.2 Computation Time;165
9.8.3;7.7.3 Comparison of Shortest Path Algorithms on Average Response Time ( ART);166
9.8.4;7.7.4 Impact of Penalty Coefficients;166
9.8.5;7.7.5 Impact of Location Plans of Station;167
9.9;7.8 CONCLUSIONS AND FUTURE RESEARCH;170
9.10;REFERENCES;170
10;Chapter 8 VEHICLE ROUTING AND SCHEDULING MODELS, SIMULATION AND CITY LOGISTICS;174
10.1;8.1 INTRODUCTION;175
10.2;8.2 CONCEPTUAL APPROACH TO A DECISION SUPPORT SYSTEM FOR THE DESIGN AND EVALUATION OF CITY LOGISTIC APPLICATIONS;178
10.3;8.3 AIMSUN MICROSCOPIC TRAFFIC SIMULATOR AND CITY LOGISTICS;184
10.4;8.4 VEHICLE ROUTING AND SCHEDULING MODELS AND CITY LOGISTICS;186
10.4.1;8.4.1 Automatic Vehicle Routing Formulation;190
10.4.2;8.4.2 Dealing with the Appropriate Time Dependent Travel Times;192
10.5;8.5 COMBINING VEHICLE ROUTING WITH AIMSUN SIMULATION;193
10.6;8.6 TWO CASE STUDIES;196
10.6.1;8.6.1 The Lucca Case;198
10.6.2;8.6.2 Piacenza Case;200
10.7;8.7 CONCLUSIONS;203
10.8;8.8 ACKNOWLEDGEMENTS;204
10.9;REFERENCES;204
11;Chapter 9 DYNAMIC MANAGEMENT OF A DELAYED DELIVERY VEHICLE IN A CITY LOGISTICS ENVIRONMENT;207
11.1;9.1 DISTRIBUTION IN A CITY LOGISTICS ENVIRONMENT;207
11.2;9.2 USER REQUIREMENTS AND SYSTEM DESCRIPTION;209
11.3;9.3 MANAGING A DELAYED DISTRIBUTION VEHICLE;212
11.3.1;9.3.1 Monitoring and Detection;213
11.3.2;9.3.2 Decision Making and Rerouting;214
11.4;9.4 SYSTEM EVALUATION;217
11.5;9.5 CONCLUSIONS;223
11.6;ACKNOWLEDGMENTS;224
11.7;REFERENCES;224
11.8;APPENDIX A;226
12;Chapter 10 REAL- TIME FLEET MANAGEMENT AT ECOURIER LTD;228
12.1;10.1 INTRODUCTION;228
12.2;10.2 THE AUTOMATED INFORMATION-BASED ALLOCATION SYSTEM;229
12.2.1;10.2.1 Zoning the Service Territory;230
12.2.2;10.2.2 Time Subdivision;231
12.2.3;10.2.3 Forecasting Logistics Requirements;232
12.2.3.1;10.2.3.1 Demand forecasting;233
12.2.3.2;10.2.3.2 Travel time forecasting;234
12.2.4;10.2.4 On Line and Off Line Procedures;238
12.2.4.1;10.2.4.1 Initialization;238
12.2.4.2;10.2.4.2 Allocating couriers;239
12.2.4.3;10.2.4.3 The ALLOCATE module;239
12.2.4.4;10.2.4.4 The allocation procedure;241
12.2.4.5;10.2.4.5 The fast insertion procedure;242
12.2.4.6;10.2.4.6 The background optimization procedure;243
12.2.5;10.2.5 Parallelization Strategy;243
12.3;10.3 LITERATURE REVIEW;243
12.4;10.4 CONCLUSIONS;245
12.5;REFERENCES;246
13;INDEX;248




