E-Book, Englisch, 414 Seiten, Web PDF
Zeigler Object-Oriented Simulation with Hierarchical, Modular Models
1. Auflage 2014
ISBN: 978-1-4832-6491-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Intelligent Agents and Endomorphic Systems
E-Book, Englisch, 414 Seiten, Web PDF
ISBN: 978-1-4832-6491-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Bernard P. Zeigler, is a Professor of Electrical & Computer Engineering at the University of Arizona and co-director of the Arizona Center for Integrative Modeling and Simulation. He is the author of numerous books and publications, a Fellow of the IEEE, and of the Society for Modeling and Simulation International. Zeigler is currently heading a project for the Joint Interoperability Test Command (JITC) where he is leading the design of the future architecture for large distributed simulation events for the Joint Distributed Engineering Plant (JDEP). He is also developing DEVS-methodology approaches for testing mission thread end-to-end interoperability and combat effectiveness of Defense Department acquisitions and transitions to the Global Information Grid with its Service Oriented Architecture (GIG/SOA).
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems;4
3;Copyright Page;5
4;Table of Contents;6
5;PREFACE;14
6;Chapter 1. DIMENSIONS OF KNOWLEDGE REPRESENTATION IN SIMULATION ENVIRONMENTS;22
6.1;1.1 Introduction;22
6.2;1.2 Knowledge Representation Schemes and Formalisms;23
6.3;1.3 Simulation Model Specification Formalisms;24
6.4;1.4 AI Knowledge Representation Schemes;24
6.5;1.5 Representation and Knowledge;26
6.6;1.6 System-theoretic Representation;28
6.7;1.7 Modular, Hierarchical Models and Object-Oriented Paradigms Contrasted;29
6.8;1.8 Framework for Knowledge Representation in Simulation;31
6.9;1.9 What Kinds of Modelling and Simulation Knowledge Are There?;32
6.10;1.10 Endomorphic Models, Simulations, and Agents;36
7;Chapter 2. BASICS;38
7.1;2.1 Object-Oriented Programming Concepts;38
7.2;2.2 The System Entity Structure/Model Base;47
7.3;2.3 Independent Testability;48
7.4;2.4 Artificial Worlds Example;53
7.5;2.5 SES Pruning and Model Synthesis;58
8;Chapter 3. DEVS FORMALISM AND DEVS-SCHEME;62
8.1;3.1 Discrete Event Dynamic Systems;62
8.2;3.2 Brief Review of the DEVS Formalism;65
8.3;3.3 Basic Models;69
8.4;3.4 Coupled Models;76
8.5;3.5 DEVS-Scheme Simulation Environment;79
9;Chapter 4. ATOMIC-MODELS: SIMPLE PROCESSOR EXAMPLE;90
9.1;4.1 Performance of Simple Architectures;91
9.2;4.2 A Simple Processor Model;93
9.3;4.3 Normal Form Atomic Model Specification;96
9.4;4.4 DEVS-Scheme Atomic Model Implementation of Simple Processor;98
9.5;4.5 Simulation of Atomic-Models;100
9.6;4.6 Stand-alone Testing of an Atomic Model;103
9.7;4.7 Simple Processor with Buffering and Random Processing Times;109
10;Chapter 5. DIGRAPH-MODELS AND EXPERIMENTAL FRAMES;110
10.1;5.1 Experimental Frame for Simple Computer Architectures;111
10.2;5.2 Development of Digraph-Models;115
10.3;5.3 Co-ordinator of Coupled-Models;126
10.4;5.4 Applicability of Frames to Models: Model Instrumentation;133
11;Chapter 6. A MODEL BASE FOR SIMPLE MULTI-COMPUTER ARCHITECTURES;138
11.1;6.1 Co-ordinators and Architectures;139
11.2;6.2 Testing the Architectures;162
12;Chapter 7. SYSTEM ENTITY STRUCTURES;166
12.1;7.1 System Entity Structure Definitions and Axioms;167
12.2;7.2 Using the System Entity Structure in DEVS-Scheme;170
12.3;7.3 System Entity Structure Organization of Model Bases;176
12.4;7.4 Operations on Hierarchical Model Structures: Flatting and Deepening;186
13;Chapter 8. ADVANCED DEVS CONCEPTS AND KERNEL-MODELS;190
13.1;8.1 More Advanced Processor Models;190
13.2;8.2 Kernel-Models: Homogeneous Structures;200
13.3;8.3 Example: Parallel Processor Broadcast Architecture;204
13.4;8.4 Methods Make-new and Make-class;211
13.5;8.5 System Entity Structure Representation of Kernel Models;213
13.6;8.6 Multilayered Models and Distributed Experimental Frames;221
14;Chapter 9. RULE-BASED SPECIFICATION OF ATOMIC-MODELS;226
14.1;9.1 Activities as Rules;226
14.2;9.2 Class Forward-Models;231
14.3;9.3 Inheritance and Specialization;237
14.4;9.4 Specialization and Multiple Entities;250
14.5;9.5 DEVS-Scheme Methodology Reviewed;252
15;Chapter 10. A ROBOT-MANAGED LABORATORY OF THE FUTURE;254
15.1;10.1 Multilevel Hierarchical Robot Model;256
15.2;10.2 Space Management for Mobile Components;259
15.3;10.3 Robot Cognition System;260
15.4;10.4 Robot-Managed Laboratory Model;268
16;Chapter 11. ENDOMORPHY: MODELS WITHIN INTELLIGENT AGENTS;270
16.1;11.1 Approach to Endomorphy: Multifacetted Modelling Methodology;273
16.2;11.2 Process Laboratory Model;275
16.3;11.3 Robot Models: Designing Model-Plan Units;277
16.4;11.4 DEVS Representation of Dynamic Systems;279
16.5;11.5 Obtaining the Characteristic Functions of the DEVS Model;283
16.6;11.6 Robot Fluid Handling MPUs;285
16.7;11.7 Table-Models: Deriving Internal Models from External Models;288
16.8;11.8 Windows in Table-Models: Parameter Sensitivity Analysis;293
17;Chapter 12. ENDOMORPHY: MODEL USAGE WITHIN INTELLIGENT AGENTS;296
17.1;12.1 Event-Based Control;296
17.2;12.2 Using DEVS Models of Processes to Construct Event-Based Control Models;300
17.3;12.3 Introspection and Super-Simulation;306
17.4;12.4 Table-Models: Command Sequence Planning;308
17.5;12.5 Breakdown Diagnosis;311
17.6;12.6 Testing MPU Designs;313
17.7;12.7 Summary: Methodology for Event-Based Control;313
18;Chapter 13. MODEL BASE MANAGEMENT AND ENDOMORPHIC SYSTEMS;320
18.1;13.1 Reuse of Pruned Entity Structures;321
18.2;13.2 Hierarchical Reuse of PES Versions;324
18.3;13.3 Partitioned System Entity Structures;325
18.4;13.4 Context Sensitive Pruning;326
18.5;13.5 Model Coherence and Context Sensitive Constraint Rules;328
18.6;13.6 Model Bases in Endomorphic Systems and Intelligent Agents;332
18.7;13.7 Minsky's Views on Models and Knowledge;337
19;Chapter 14. DEVS-SCHEME IN THE LARGER SCHEME OF THINGS;346
19.1;14.1 Layers of DEVS-Scheme;347
19.2;14.2 Other Properties, Other Views;355
20;Chapter 15. EPILOGUE: THE CHALLENGE OF HIGH AUTONOMY SYSTEMS;368
21;Appendix A: ADVANCED CONCEPTS AND FACILITIES;372
21.1;A.1 Continuous Model Extensions to DEVS-Scheme;372
21.2;A.2 Simulation of Multi-formalism Non-homogeneous Networks;374
21.3;A.3 Distributed Simulation of DEVS Models;375
21.4;A.4 Automated Hierarchical Model Simplification;377
21.5;..5 Variable Structure Models;379
21.6;A.6 Using Object-Oriented Concepts to Support Extensibility of Layer 1 with Respect to Layer 2;381
21.7;A.7 Converting Non-modular to Modular Form;382
22;Appendix B: DEVS AND GSMP: SOME RELATIONS;384
22.1;..1 Some Simple Behaviors of DEVS;385
22.2;B.2 Proof that the DEVS Behaviors Require Uncountable State Sets;386
22.3;B.3 Expressing GSMP within DEVS;387
23;Bibliography;390
24;Index;408




