Zaslavski | Numerical Optimization with Computational Errors | E-Book | sack.de
E-Book

E-Book, Englisch, 308 Seiten

Reihe: Springer Optimization and Its Applications

Zaslavski Numerical Optimization with Computational Errors


1. Auflage 2016
ISBN: 978-3-319-30921-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 308 Seiten

Reihe: Springer Optimization and Its Applications

ISBN: 978-3-319-30921-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors  are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative.

This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.

Zaslavski Numerical Optimization with Computational Errors jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction.- 2. Subgradient Projection Algorithm.- 3. The Mirror Descent Algorithm.- 4. Gradient Algorithm with a Smooth Objective Function.- 5. An Extension of the Gradient Algorithm.- 6. Weiszfeld's Method.- 7. The Extragradient Method for Convex Optimization.- 8. A Projected Subgradient Method for Nonsmooth Problems.- 9. Proximal Point Method in Hilbert Spaces.- 10. Proximal Point Methods in Metric Spaces.- 11. Maximal Monotone Operators and the Proximal Point Algorithm.- 12. The Extragradient Method for Solving Variational Inequalities.- 13. A Common Solution of a Family of Variational Inequalities.- 14. Continuous Subgradient Method.- 15. Penalty Methods.- 16. Newton's method.- References.- Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.