Zarges / Paquete | Evolutionary Computation in Combinatorial Optimization | Buch | 978-3-030-43679-7 | sack.de

Buch, Englisch, 231 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Theoretical Computer Science and General Issues

Zarges / Paquete

Evolutionary Computation in Combinatorial Optimization

20th European Conference, EvoCOP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15-17, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-43679-7
Verlag: Springer International Publishing

20th European Conference, EvoCOP 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15-17, 2020, Proceedings

Buch, Englisch, 231 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 382 g

Reihe: Theoretical Computer Science and General Issues

ISBN: 978-3-030-43679-7
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 20th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2020, held as part of Evo*2020, in Seville, Spain, in April 2020, co-located with the Evo*2020 events EuroGP, EvoMUSART and EvoApplications.
The 14 full papers presented in this book were carefully reviewed and selected from 37 submissions. The papers cover a wide spectrum of topics, ranging from the foundations of evolutionary computation algorithms and other search heuristics, to their accurate design and application to combinatorial optimization problems.

Zarges / Paquete Evolutionary Computation in Combinatorial Optimization jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Optimizing Prices and Periods in Time-of-use Electricity Tariff Design Using Bilevel Programming.- An Algebraic Approach for the Search Space of Permutations with Repetition.- A Comparison of Genetic Representations for Multi-Objective Shortest Path Problems on Multigraphs.- The Univariate Marginal Distribution Algorithm Copes well with Deception and Epistasis.- A Beam Search Approach to the Traveling Tournament Problem.- Cooperative Parallel SAT Local Search with Path Relinking.- Dynamic Compartmental Models for Large Multi-Objective Landscapes and Performance Estimation.- Fitness Landscape Analysis of Automated Machine Learning Search Spaces.- On the Combined Impact of Population Size and Sub-problem Selection in MOEA/D.- A Grouping Genetic Algorithm for Multi Depot Pickup and Delivery Problems with Time Windows and Heterogeneous Vehicle Fleets.- MILPIBEA: Algorithm for Multi-Objective Features Selection in (Evolving) Software Product Lines.- A Group Genetic Algorithm for Resource Allocation in Container-Based Clouds.- The Local Optima Level in Chemotherapy Schedule Optimisation.- Genetic Programming with Adaptive Search Based on the Frequency of Features for Dynamic Flexible Job Shop Scheduling.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.