Zanetta | Understanding Electromagnetic Transients in Power Systems | Buch | 978-1-394-24055-5 | sack.de

Buch, Englisch, 704 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1093 g

Zanetta

Understanding Electromagnetic Transients in Power Systems

Buch, Englisch, 704 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1093 g

ISBN: 978-1-394-24055-5
Verlag: Wiley


Understand transients and their roles in linear systems with this essential guide

Electromagnetic transients are a fundamental aspect of linear power systems, and therefore a key knowledge area for electrical engineers. Understanding Electromagnetic Transients in Power Systems provides a comprehensive but accessible overview to transients, their underlying theory and mathematics, and their impact in electrical power system design. Its detailed but clear presentation makes it a must-own for students and working engineers alike.

Readers of Understanding Electromagnetic Transients in Power Systems will also find: - Deep consideration of the relationship between foundational concepts, mathematical calculations, and impacts on equipment
- Detailed discussion of topics including time and frequency domain analysis, basic transforms, fundamentals of electrical circuit transients and traveling waves, overvoltage, insulation coordination, and many more
- Dozens of solved simple examples to facilitate understanding

Understanding Electromagnetic Transients in Power Systems is ideal for electrical engineers and professionals in utilities and equipment manufacturing, as well as for graduate and advanced undergraduate students learning about transients, electrical circuits, and related subjects.
Zanetta Understanding Electromagnetic Transients in Power Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


About the Author xvii

Preface xix

1 Transients in Elementary Circuits and the Laplace Transform 1

1.1 Introduction 1

1.2 Laplace Transform 2

1.2.1 Definition 2

1.2.2 Some Transforms and Their Elementary Properties 2

1.2.3 Inversion of the Laplace Transform 5

1.3 The Convolution Integral 7

1.4 RL Circuit 8

1.4.1 RL Circuit with Sinusoidal Voltage Source 9

1.4.2 RL Circuit with DC Voltage Source 13

1.5 Series RLC Circuit 15

1.5.1 RLC Circuit with Sinusoidal Voltage Source 15

1.5.2 LC Circuit 20

1.6 Resonance at the Nominal Frequency 27

1.7 Analysis of Simple Networks with More Than One Loop 28

1.7.1 Inductive and Capacitive Elements with Initial Conditions 29

1.7.2 Network Analysis 30

References 34

2 Traveling Waves in Single-Phase Lines 35

2.1 Introduction 35

2.2 Basic Equations 38

2.2.1 Transmission Line with Losses 38

2.2.2 Lossless Transmission Line 40

2.3 Voltage and Current Relations and Surge Impedance of a Lossless Transmission Line 44

2.4 Traveling Waves in Discontinuities – Reflected and Refracted Waves 45

2.4.1 A Generic Impedance at the Line Terminal 46

2.4.2 Analysis of Discontinuities Using the Thévenin Equivalent 55

2.5 Nonlinear Elements 58

2.6 Lattice Diagram 63

2.7 Sine Voltage Waves 66

References 67

3 Traveling Waves in Multiphase Lines 69

3.1 Introduction 69

3.2 Elements of Matrix Algebra 70

3.2.1 Calculation of the Exponential Matrix e Ax 70

3.2.2 Modal Decomposition 71

3.2.3 Properties of Symmetric and Balanced Matrices 73

3.2.4 Diagonalization of the Product of Symmetrical Matrices 73

3.3 Phase Domain 75

3.3.1 Multiphase Line 75

3.3.2 Relationship Between Voltages and Currents – Matrix of Characteristic Impedances 78

3.3.3 Lossless Transmission Line 79

3.3.4 Traveling Waves in Multiphase Lines with Discontinuities 81

3.3.5 Thévenin Equivalent in Multiphase Circuits 83

3.4 Modal Domain 84

3.4.1 Modal Analysis 84

3.4.2 Analysis of the Propagation Modes 86

3.4.3 Basic Models in the Modal Domain 91

3.4.4 Traveling Waves in Discontinuities 93

References 106

4 Numerical Solution of Electromagnetic Transients 109

4.1 Introduction 109

4.2 Single-Phase Models 110

4.2.1 Inductance Model 110

4.2.2 Capacitance Model 111

4.2.3 Resistance Model 112

4.2.4 RL Circuit 112

4.2.5 Single-Phase Transmission Line Models 113

4.3 Transient Solution Using Nodal Analysis 120

4.4 Nonlinear Elements 128

4.4.1 Resistive Elements 128

4.4.2 Inductive Elements 131

4.4.3 Conversion of the Saturation Curve 134

4.5 Representation of Switches 138

4.6 Multiphase Models 139

4.6.1 Three-Phase Inductive Circuit with Mutual Inductances 139

4.6.2 Three-Phase Circuit with Resistances and Inductances 141

4.6.3 Three-Phase Capacitive Circuit 142

4.6.4 Three-Phase Transmission Lines 143

4.7 Comments on Numerical Errors 147

References 152

5 Electrical Parameters Dependence on Frequency 153

5.1 Introduction 153

5.2 Elements for Mathematical Modeling 154

5.2.1 Fitting of Rational Functions 155

5.2.2 Convolution Integral by the Recursive Method 157

5.3 Modal Domain Approach 160

5.3.1 Convolution with the Propagation Function 162

5.3.2 Convolution with the Characteristic Admittance 166

5.4 Frequency-Dependent Transformation Matrix 168

5.5 Model of the Transmission Line with the Nodal Admittance Matrix 171

5.5.1 Inverse Fourier Transform 171

5.5.2 State-Space Model of the Transmission Line 173

5.5.3 Norton’s Equivalent 174

5.5.4 Calculation of the Nodal Admittance Matrix in Frequency Domain 176

5.5.5 Frequency-Dependent Network Equivalents-FDNEs 176

5.6 Transmission Line Parameters 177

5.6.1 Internal Impedance of the Conductor 177

5.6.2 Matrix of Series Impedance with Carson’s Corrections 178

5.6.3 Matrix of Series Impedance with a Complex Ground Return Plane 179

5.6.4 Matrix of Capacitances 180

References 180

6 Elements of Power Electronics 185

6.1 Introduction 185

6.2 LCC – Line Commutated Converters 186

6.2.1 Rectifier Bridge without Commutation Angle 187

6.2.2 Rectifier Bridge with Commutation Angle 189

6.2.3 Inverter Bridge 192

6.2.4 Fourier Analysis of Current in Six-Pulse Bridges 194

6.3 Thyristor Controlled Reactors and Switched Capacitors 198

6.4 Power Electronics – with VSC 202

6.4.1 Voltage Source Converters – VSC in Transmission Systems 202

6.4.2 Application of VSC in Renewable Generation 207

6.5 VSC Elements 208

6.5.1 Converter Bridges 208

6.5.2 Gate Drivers 210

6.6 MMC – Modular Multilevel Converter 212

6.7 Converter Control 217

6.7.1 Transformation abc/aß and aß/dq 217

6.7.2 PLL – Phase-Locked Loop 222

6.7.3 Elementary Control 226

6.8 VSC Models 227

6.8.1 Switching Models 228

6.8.2 Averaged Switch Models 228

6.8.3 Simple Source Models 232

References 233

7 Phasor Domain Analysis and Temporary Overvoltages 235

7.1 Introduction 235

7.2 Line Energization and Load Rejection 235

7.2.1 Line Energization 236

7.2.2 Load Rejection 245

7.3 Faults 251

7.4 Open Phases in Transmission Lines 257

7.4.1 Introduction 257

7.4.2 Network Modeling 259

7.4.3 Model for Single-Phase Autoreclosure 271

7.4.4 Model for Stuck Breaker Analysis 277

7.4.5 Single-Phase Autoreclosure 277

7.5 Voltages Induced in Parallel Circuits 278

7.5.1 General Considerations 278

7.5.2 Model for the Capacitive Coupling Between Circuits 278

7.5.3 Circuits with Reactive Compensation 281

7.5.4 Comments on Resonance Analysis in Parallel Circuits 286

7.6 Frequency Response Analysis 290

7.6.1 Introduction 290

7.6.2 Modeling the Network Elements 290

7.6.3 Harmonic Flow 292

7.6.4 Harmonics of Transformers 293

7.6.5 Harmonics of Converters and Filtering 294

7.7 Temporary Overvoltages with Transformers 301

7.7.1 Transformer Energization and Load Rejection 301

7.7.2 Ferroresonance 302

References 314

8 Switching Surges 317

8.1 Introduction 317

8.2 General Considerations 318

8.3 Line Energization and Line Autoreclosure 320

8.3.1 Energization 320

8.3.2 Autoreclosure 325

8.3.3 Residual Voltage for Tripolar Opening 328

8.3.4 Preinsertion Resistor 334

8.4 Faults 342

8.4.1 AC Systems 342

8.4.2 dc Transmission Line 344

8.5 Fault Clearing 346

8.6 Load Rejection 347

8.7 Transformer Energization 348

8.8 Controlled Switching 353

8.8.1 Opening and Closing Switching 354

8.8.2 Switching of Reactive Compensation and Transmission Lines 357

8.9 VFTO – Very Fast Transient Overvoltages 360

8.9.1 Disconnector Operation in Gas-Insulated Substations 360

8.9.2 GIS Components Modeling 362

References 364

9 Lightning Surges 367

9.1 Introduction 367

9.2 Data to Calculate Lightning Surges 369

9.2.1 Lightning Current 369

9.2.2 Wavefront and Tail Time 371

9.2.3 Ground Flash Density 373

9.2.4 Topography and Soil Resistivity 373

9.3 Models for Overvoltage Calculations 374

9.3.1 Lines and Cables 374

9.3.2 Towers 374

9.3.3 Tower Grounding 377

9.3.4 Substation Equipment 380

9.3.5 Lightning Stroke Attachment 380

9.3.6 Dielectric Strength of the Insulation 382

9.4 Transmission Line Analysis 382

9.4.1 Lightning Strokes 383

9.4.2 Direct Stroke 383

9.4.3 Back-Flashover 383

9.4.4 Line-Arrester Application 393

9.4.5 Induced Overvoltages in Transmission Lines 402

9.4.6 Underground Cables 410

9.4.7 Corona 411

9.5 Substations Studies 413

9.5.1 Air Insulated Substations 415

9.5.2 Gas Insulated Substations-GIS 419

References 422

10 Transients in Systems with Shunt Capacitors 427

10.1 Introduction 427

10.2 High-Frequency Current and Voltage Transients 427

10.2.1 Energization of Shunt-Capacitor Banks 428

10.2.2 Restrike and Trapped Charge 431

10.2.3 Overvoltages and Arresters 433

10.2.4 Voltage Amplification 437

10.2.5 Lightning Surges 437

10.3 Back-to-Back Shunt Capacitor 439

10.3.1 Transient Inrush Currents 439

10.3.2 Back-to-Back Energization 440

10.3.3 Restrike 442

10.3.4 Faults 442

10.4 Three-Phase Circuits 456

10.4.1 Stored Charges in Ungrounded Shunt Capacitors 456

10.4.2 Trapped Charges in Grounded Shunt Capacitors 460

10.4.3 Reclosing and Restrike in Three-phase Circuits 460

10.5 High-Frequency Requirements for Substation Equipment 465

10.5.1 Circuit Breakers 466

10.5.2 Current Transformers 468

10.5.3 Shunt Capacitors 470

10.5.4 Surge Arrester 470

References 470

11 Transients in Systems with Series Capacitors 473

11.1 Introduction 473

11.2 Protection Schemes for Series Capacitor Banks 474

11.2.1 Protection by Spark Gaps 475

11.2.2 Protection by Metal Oxide Varistor 476

11.3 Protection Schemes Performance 477

11.3.1 Triggering Levels for Spark Gaps 477

11.3.2 Reinsertion Overvoltages 478

11.3.3 Protection Schemes with MOV 483

11.4 Complementary Studies 490

References 493

12 Transient Recovery Voltage 495

12.1 Introduction 495

12.1.1 Fault Currents 495

12.1.2 Extinction of the Fault Current 496

12.2 Transient Recovery Voltage 497

12.2.1 Steady-State Component and Transient Component 497

12.2.2 Opening Sequence for the Circuit Breaker Poles 498

12.3 Calculation of the Transient Recovery Voltage 499

12.3.1 Current Injection Method and Principle of Superposition 499

12.3.2 Calculation with Electromagnetic Transient Programs 501

12.4 TRV in Single Phase Inductive Circuits 502

12.4.1 Current Interruption in Inductances 502

12.4.2 Inductance and Capacitance 504

12.4.3 Transient Recovery Voltage with Transmission Lines 509

12.5 Calculation of the TRV in Three-Phase Circuits 512

12.5.1 Three-phase Ungrounded Fault in the Transmission Line 513

12.5.2 Three-Phase Ungrounded Fault in the Substation Bus 516

12.5.3 Rate of Rise of the Recovery Voltage – RRRV 517

12.5.4 Analysis with Symmetrical Components 520

12.5.5 Traveling Waves 525

12.5.6 TRV Analysis in the Frequency Domain 530

12.6 Short Line Fault 534

12.6.1 Time Domain Analysis 534

12.6.2 Analysis with Two-Port Network 540

12.7 TRV in Systems with Series Capacitors 541

12.8 Electric Arc 543

12.8.1 Cassie’s Model 545

12.8.2 Mayr’s Model 546

12.8.3 Stability of the Electric Arc for Small Currents 547

12.9 Comments on Asymmetrical Faults and ITRV 547

12.9.1 Asymmetrical Current 547

12.9.2 Initial Transient Recovery Voltage 548

12.10 Standards for Transient Recovery Voltage 549

References 551

13 Surge Arrester 553

13.1 Introduction 553

13.2 Overvoltage Control – Basic Concepts 554

13.2.1 Analysis Using the Thévenin Equivalent Circuit 554

13.2.2 Three-Phase Transmission Line 557

13.3 Types and Characteristics of Surge Arresters 558

13.3.1 Silicon–Carbide Surge Arrester 558

13.3.2 Metal Oxide Surge Arrester (MOSA) 559

13.4 Surge Arrester Application 563

13.4.1 Rating Selection 564

13.4.2 Protection Levels and Insulation Coordination 565

13.5 Performance of Surge Arresters 567

13.5.1 Simplified Model of the Surge Arrester 567

13.5.2 Arrester Energy Dissipation 568

13.5.3 Arrester and Switching Surges 578

13.5.4 Surge Arrester and Fast-Front Overvoltages 580

References 592

14 Insulation Coordination of Transmission Lines and Substations 593

14.1 Introduction 593

14.2 Basic Probabilistic Concepts 594

14.2.1 Elementary Concepts 594

14.2.2 Probability Density Function and Distribution Function 595

14.2.3 Function of Random Variable 600

14.2.4 Joint Probability Density Function and Distribution with Two Random Variables 601

14.3 Insulation Strength 602

14.3.1 Impulse Tests for Lightning and Switching Surges 603

14.3.2 Self-Restoring and Non-Self-Restoring Insulation 603

14.3.3 Withstand Levels for Self-Restoring Insulation 606

14.4 Insulation Coordination Methods 610

14.4.1 Deterministic Method 612

14.4.2 Statistical Method 612

14.4.3 Simplified Statistical Method 616

14.4.4 Further Comments on Slow-Front and Fast-Front Overvoltages 616

14.5 Insulation Coordination of Substations 617

14.5.1 Power-Frequency Voltage 618

14.5.2 Fast-Front Overvoltages 618

14.5.3 Slow-Front Overvoltages 620

14.6 Insulation Coordination of Transmission Lines 625

14.6.1 Insulation Coordination for Lightning Surges 627

14.6.2 Insulation Coordination for Switching Surges 645

References 650

Index 653


Luiz Cera Zanetta, Jr., PhD, is a Senior Member of IEEE and a full professor at University of São Paulo. His numerous publications and R&D projects for utilities have played a key role in advancing and solidifying the area of electromagnetic transient analysis and equipment specifications for major power plant projects and long-distance interconnections in Brazil. His interests range from electromagnetic transients to Flexible AC Transmission Systems, including dynamic stability analysis, in research domains that are challenging for achieving consistency. Currently his primary interest is to contribute to the enhancement of engineering education.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.