Zalcman / Duren | Menahem Max Schiffer: Selected Papers Volume 2 | Buch | 978-1-4939-3955-8 | sack.de

Buch, Englisch, 555 Seiten, Previously published in hardcover, Format (B × H): 178 mm x 254 mm, Gewicht: 10598 g

Reihe: Contemporary Mathematicians

Zalcman / Duren

Menahem Max Schiffer: Selected Papers Volume 2


Softcover Nachdruck of the original 1. Auflage 2014
ISBN: 978-1-4939-3955-8
Verlag: Springer

Buch, Englisch, 555 Seiten, Previously published in hardcover, Format (B × H): 178 mm x 254 mm, Gewicht: 10598 g

Reihe: Contemporary Mathematicians

ISBN: 978-1-4939-3955-8
Verlag: Springer


M. M. Schiffer, the dominant figure in geometric function theory in the second half of the twentieth century, was a mathematician of exceptional breadth, whose work ranged over such areas as univalent functions, conformal mapping, Riemann surfaces, partial differential equations, potential theory, fluid dynamics, and the theory of relativity. He is best remembered for the powerful variational methods he developed and applied to extremal problems in a wide variety of scientific fields.

Spanning seven decades, the papers collected in these two volumes represent some of Schiffer's most enduring innovations. Expert commentaries provide valuable background and survey subsequent developments. Also included are a complete bibliography and several appreciations of Schiffer's influence by collaborators and other admirers.

Zalcman / Duren Menahem Max Schiffer: Selected Papers Volume 2 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Part 4: Reprints.- The Fredholm eigen values of plane domains.- Fredholm eigen values of multiply-connected domains.- Fredholm eigenvalues and conformal mapping.- Fredholm eigenvalues and Grunsky matrices.- Commentary by Reiner K¨uhnau.- (with G. P´olya) Sur la repr´esentation conforme de l’ext´erieur d’une courbe ferm´ee convexe.- Commentary by Peter Duren.- Extremum problems and variational methods in conformal mapping.- Commentary by Peter Duren.- (with Z. Charzy´nski) A new proof of the Bieberbach conjecture for the fourth Coefficient.- Commentary by Peter Duren.- (with P. L. Duren) A variational method for functions schlicht in an annulus.- Commentary by Peter Duren.- (with B. Epstein) On the mean-value property of harmonic functions.- Commentary by Lawrence Zalcman.- (with N. S. Hawley) Half-order differentials on Riemann surfaces.- Commentary by John Fay.- (with P. R. Garabedian) The local maximum theorem for the coefficients of univalent functions.- Commentary by Peter Duren.- Some distortion theorems in the theory of conformal mapping.- Commentary by Peter Duren.- (with G. Schober) An extremal problem for the Fredholm eigenvalues.- (with G. Schober) A remark on the paper “An extremal problem for the Fredholm eigenvalues”.- (with G. Schober) A variational method for general families of quasiconformal mappings.- Commentary by Reiner Kühnau.- (with J. Hersch and L. E. Payne) Some inequalities for Stekloff eigenvalues.- Commentary by Bodo Dittmar.- (with J. A. Hummel) Variational methods for Bieberbach-Eilenberg functions and for pairs.- Commentary by Dov Aharonov.- (with J. A. Hummel and B. Pinchuk) Bounded univalent functions which cover a fixed disc.- Commentary by Bernard Pinchuk.- (with G. Schober) The dielectric Green’s function and quasiconformal mapping.- Commentary by Brad Osgood.- (with A. Chang and G. Schober) On the second variation for univalent functions.- Commentary by Peter Duren.- (with D. Aharonov and L. Zalcman)Potato kugel.- Commentary by Lawrence Zalcman.- (with P. L. Duren and Y. J. Leung) Support points with maximum radial angle.- Commentary by Peter Duren.- (with P. L. Duren) Univalent functions which map onto regions of given transfinite diameter.- Commentary by Peter Duren.- (with P. L. Duren) Robin functions and distortion of capacity under conformal mapping.- Commentary by Peter Duren.- Issai Schur: Some personal reminiscences.- Commentary by Lawrence Zalcman.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.