E-Book, Englisch, 386 Seiten, eBook
Zaknich Principles of Adaptive Filters and Self-learning Systems
2005
ISBN: 978-1-84628-121-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 386 Seiten, eBook
Reihe: Advanced Textbooks in Control and Signal Processing
ISBN: 978-1-84628-121-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Teaches students about classical and nonclassical adaptive systems within one pair of covers
Helps tutors with time-saving course plans, ready-made practical assignments and examination guidance
The recently developed "practical sub-space adaptive filter" allows the reader to combine any set of classical and/or non-classical adaptive systems to form a powerful technology for solving complex nonlinear problems
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Part I: Introduction Adaptive Filtering Linear Systems and Stochastic Processes Part II: Modelling Optimisation and Least Square Estimation Parametric Signal and System Modelling Part III: Classical Filters and Spectral Analysis Optimum Wiener Filter Optimal Kalman Filter Power Spectral Density Analysis Part IV: Adaptive Filter Theory Adaptive Finite Impulse Response Filters Frequency Domain Adaptive Filters Adaptive Volterra Filters Adaptive Control Systems Part V: Nonclassical Adaptive Systems Introduction to Neural Networks Introduction to Fuzzy Logic Systems Introduction to Genetic Algorithms Part VI: Adaptive Filter Application Applications of Adaptive Signal Processing Generic Adaptive Filter Structures




