E-Book, Englisch, 251 Seiten, Web PDF
Reihe: IFAC Postprint Volume
Zafiriou Integration of Process Design and Control
1. Auflage 2014
ISBN: 978-1-4832-9695-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 251 Seiten, Web PDF
Reihe: IFAC Postprint Volume
ISBN: 978-1-4832-9695-1
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The existence of interactions between the design of a process and that of its control system have been known to industrial practitioners for a long time. In the past decade academic research has produced methodologies and tools that begin to address the issue of designing processes that are flexible, can be controlled reliably, and are inherently safe. This publication unites the work of academics and practitioners with interests in the integration of process design and control, in order to examine the state of the art in methodologies and applications. The scope covers the design of chemical plants at different stages of detail. It also examines control issues from the plantwide level, where, for example, recycles between units can be important, to the specific unit level, where the availability or selection of measurements might be the most important factor.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Integration of Process Design and Control (IPDC'94);2
3;Copyright Page;3
4;Table of Contents;6
5;Preface;5
6;PART I: PLENARY PAPER;10
6.1;CHAPTER 1. OPTIMIZATION AS A TOOL FOR DESIGN/CONTROL INTEGRATION;10
6.1.1;1. INTRODUCTION;10
6.1.2;2. CONTROLLABILITY ANALYSIS;11
6.1.3;3. CONTROL STRUCTURE SELECTION;12
6.1.4;4. INTEGRATED PROCESS DESIGN;14
6.1.5;5. CONCLUSIONS;17
6.1.6;6. REFERENCES;18
7;PART II: PROCESS CONTROLLABILITY;20
7.1;CHAPTER 2. DYNAMIC CONTROLLABILITY AND RESILIENCY DIAGNOSIS USING STEADY STATE PROCESS FLOWSHEET DATA;20
7.1.1;Abstract;20
7.1.2;1 Introduction;20
7.1.3;2 C&R Measures;20
7.1.4;3 Short-cut C&R Diagnosis;21
7.1.5;4 Generating Dynamic Models;21
7.1.6;5 A Case Study;22
7.1.7;6 Conclusions;24
7.1.8;Acknowledgement;25
7.1.9;References;25
7.2;CHAPTER 3. IMPROVED CONFIDENCE IN DESIGN THROUGH CONTROLLABILITY ANALYSIS;26
7.2.1;INTRODUCTION;26
7.2.2;LIMITATIONS TO CONTROL INPUTS AND OUTPUTS WHICH CAN BE SPECIFIED IN FLOWPACK;26
7.2.3;LIMITATION 1;26
7.2.4;LIMITATION 2;27
7.2.5;STRATEGY;27
7.2.6;THE PROCESS AND PROPOSED CONTROL SCHEME;27
7.2.7;CONTROLLABILITY INDICATORS SET 1 (See Figure 3);27
7.2.8;CONTROLLABILITY INDICATORS SET 2 (See Figure 4);28
7.2.9;CONTROLLABILITY INDICATORS SET 3 (See Figure 5);28
7.2.10;CONTROLLABILITY INDICATORS SET 4 (See Figure 6);28
7.2.11;CONTROLLABILITY INDICATORS SET 5 (See Figure 7);29
7.2.12;KEY OF ELEMENT VARIABLE NAMES:;29
7.2.13;GENERAL COMMENTS AND CONCLUSIONS;31
7.2.14;REFERENCES;32
7.3;CHAPTER 4. A PROCEDURE FOR SISO CONTROLLABILITY ANALYSIS - with application to design of pH processes;34
7.3.1;1 INTRODUCTION;34
7.3.2;2 CONTROLLABILITY ANALYSIS PROCEDURE;35
7.3.3;3 SIMPLE EXAMPLES;36
7.3.4;4 NEUTRALIZATION PROCESS;37
7.3.5;5 REFERENCES;39
7.3.6;APPENDIX: Neutralization model;39
7.4;CHAPTER 5. ON THE DYNAMIC RESILIENCY OF CONSTRAINED PROCESSES;40
7.4.1;INTRODUCTION;40
7.4.2;CONSTRAINED CONTROL;41
7.4.3;TUNING PARAMETER INDEPENDENCE;42
7.4.4;UNMOVABLE CLOSED-LOOP "POLES";42
7.4.5;ILLUSTRATIONS;43
7.4.6;APPENDIX: A;44
7.4.7;REFERENCES;45
7.5;CHAPTER 6. ASSESSMENT OF INPUT-OUTPUT CONTROLLABILITY IN THE PRESENCE OF CONTROL CONSTRAINTS;46
7.5.1;1. INTRODUCTION;46
7.5.2;2. SINGULAR VALUE ANALYSIS;46
7.5.3;3. OPTIMISATION-BASED APPROACH;47
7.5.4;4. CASE STUDY;47
7.5.5;5. CONCLUSION;51
7.5.6;6. ACKNOWLEDGEMENTS;51
7.5.7;7. REFERENCES;51
7.6;CHAPTER 7. EVALUATION OF ACHIEVABLE CONTROL QUALITY IN NONLINEAR PROCESSES;52
7.6.1;1. INTRODUCTION;52
7.6.2;2. RELATIVE ORDERS: TIME-DELAYS OF PROCESS;53
7.6.3;3. TIME-DELAY FACTORIZATION OF NONLINEAR SYSTEMS;54
7.6.4;4. NONLINEAR PROCESSES WITH MEASURABLE DISTURBANCES;57
7.6.5;5. REFERENCES;57
8;PART III: ENVIRONMENTS FOR INTEGRATED DESIGN AND CONTROL;58
8.1;CHAPTER 8. VALIDATION OF PROTOTYPE SOFTWARE FOR INTEGRATED CONTROL SYSTEM AND PROCESS DESIGN;58
8.1.1;1. INTRODUCTION;58
8.1.2;2. WET GRINDING CIRCUIT STUDY;58
8.1.3;3. ETHYLENE OXIDE STUDY;61
8.1.4;4. CONCLUSIONS;61
8.1.5;ACKNOWLEDGEMENTS;62
8.1.6;NOTATION;62
8.1.7;REFERENCES;62
8.1.8;APPENDIX;62
8.2;CHAPTER 9. INTEGRATION OF PROCESS DESIGN AND OPERATION IN STATOIL;64
8.2.1;1. INTRODUCTION;64
8.2.2;2. INTEGRATED DESIGN;64
8.2.3;3. THE CADAS TOOL;66
8.2.4;4. CURRENT EXPERIENCE;67
8.2.5;5. FUTURE ACCOMPLISHMENTS;68
8.2.6;6. CONCLUSION;69
8.2.7;7. REFERENCES;69
8.3;CHAPTER 10. A GRAPH-THEORETIC APPROACH TO INTEGRATED PROCESS AND CONTROL SYSTEM SYNTHESIS;70
8.3.1;1. INTRODUCTION;70
8.3.2;2. PROBLEM STATEMENT AND ASSUMPTIONS;71
8.3.3;3. DEFINITIONS FOR CONTROL SYSTEM SYNTHESIS;71
8.3.4;4. ALGORITHM FOR GENERATING THE MAXIMAL CONTROLLABLE STRUCTURE;73
8.3.5;5. CASE STUDY;74
8.3.6;6. CONCLUDING REMARKS;75
8.3.7;7. ACKNOWLEDGEMENT;75
8.3.8;8. REFERENCES;75
8.4;CHAPTER 11. PROCESS DESIGN AND CONTROL FOR QUALITY ASSURANCE;76
8.4.1;1. INTRODUCTION;76
8.4.2;2. QUALITY AS A STATE FUNCTION;77
8.4.3;3. EXAMPLE PROCESS;77
8.4.4;5. QUALITY-ORIENTED PROCESS DESIGN;79
8.4.5;6. QUALITY-ORIENTED PROCESS CONTROL;80
8.4.6;7. CONCLUSION;81
8.4.7;8. REFERENCES;81
9;PART IV: INTEGRATION OF DESIGN AND CONTROL FOR
DISTILLATION SYSTEMS;82
9.1;CHAPTER 12. MODELLING, SIMULATION AND CONTROLLABILITY ANALYSIS OF A HEAT-INTEGRATED INDUSTRIAL DISTILLATION SYSTEM;82
9.1.1;1. INTRODUCTION;82
9.1.2;2. DESCRIPTION OF THE PROCESS;82
9.1.3;3. CONTROLLABILITY ANALYSIS;84
9.1.4;4. CONCLUSIONS AND OUTLOOK;87
9.1.5;References;87
9.2;Chapter 13. Interaction Between Design and Control In Heat-Integrated Distillation Synthesis;88
9.2.1;Abstract;88
9.2.2;1. Introduction;88
9.2.3;2. Mathematical Model;88
9.2.4;3. Steady-State Gains;90
9.2.5;4. Multiobjective Optimization Results;90
9.2.6;References;91
9.3;CHAPTER 14. A METHOD FOR ASSESSING THE EFFECTS OF DESIGN PARAMETERS ON CONTROLLABILITY;94
9.3.1;1 INTRODUCTION;94
9.3.2;2 METHOD;94
9.3.3;3 METHOD EXAMPLE;95
9.3.4;4 CONCLUSIONS;100
9.3.5;REFERENCES;100
9.4;CHAPTER 15. INTEGRATED PROCESS AND PROCESS CONTROL DESIGN OF A PP-SPLITTER USING DYNAMIC FLOWSHEET SIMULATION AND SHELL MULTIVARIABLE OPTIMISING CONTROL;102
9.4.1;1. INTRODUCTION;102
9.4.2;2. INTEGRATED DESIGN;102
9.4.3;3. THE DYNAMIC MODEL OF THE PP-SPLITTER;103
9.4.4;4. CONTROL SYSTEM DESIGN;104
9.4.5;5. INTEGRATION OF PROCESS DESIGN AND PROCESS CONTROL DESIGN;104
9.4.6;6. MIMO VERSUS SISO CONTROL;105
9.4.7;7. DISCUSSION AND CONCLUDING REMARKS;106
9.4.8;8. REFERENCES;106
9.5;CHAPTER 16. INTERACTIVE PLANT AND CONTROL DESIGN OF A DOUBLE-EFFECT DISTILLATION COLUMN;108
9.5.1;1. INTRODUCTION;108
9.5.2;2. PLANT MODEL;108
9.5.3;3. PROCESS DESIGN AND ANALYSYS;109
9.5.4;4. CONTROLLER DESIGN;110
9.5.5;5. SIMULATION RESULTS;112
9.5.6;6. CONCLUSION;113
9.5.7;7. ACRONYMS;113
9.5.8;8. REFERENCES;113
10;PART V: INVITED INDUSTRIAL PAPER;114
10.1;CHAPTER 17. INDUSTRIAL VIEWPOINT ON DESIGN/CONTROL TRADEOFFS;114
10.1.1;1. INTRODUCnON;114
10.1.2;2. KEY ISSUES;115
10.1.3;3. EXAMPLES;117
10.1.4;4. DISCUSSION AND SUMMARY;124
10.1.5;5. REFERENCES;124
11;PART VI: POSTER PAPERS;126
11.1;CHAPTER 18. INTEGRATION OF FLEXIBILITY AND CONTROL IN PROCESS DESIGN;126
11.1.1;1. INTRODUCTION;126
11.1.2;2. THE PROBLEM STATEMENT;127
11.1.3;3. PARETO SOLUTION APPROACH;127
11.1.4;4. THE COST FUNCTION;128
11.1.5;5. EXAMPLE APPLICATIONS;129
11.1.6;6. REFERENCES;131
11.2;Chapter 19. Effect of Process Design on the Open-loop Behavior of a Jacketed Exothermic CSTR;132
11.2.1;1 INTRODUCTION;132
11.2.2;2 CONTINUOUS STIRRED TANK REACTOR MODELS;132
11.2.3;3 STEADY-STATE MULTIPLICITY;133
11.2.4;4 OPEN-LOOP DYNAMICS;134
11.2.5;5 CONCLUSIONS;135
11.2.6;REFERENCES;135
11.2.7;APPENDIX;136
11.3;CHAPTER 20. INTELLIGENT SYSTEM FOR DESIGN OF HEAT EXCHANGER NETWORKS WITH IMPROVED CONTROLLABILITY;138
11.3.1;1. INTRODUCTION;138
11.3.2;2. METHODOLOGY;139
11.3.3;3. INTELLIGENT SYSTEM;141
11.3.4;4. ILLUSTRATION;142
11.3.5;5. CONCLUSIONS;143
11.3.6;6. REFERENCES;143
11.4;CHAPTER 21. INTELLIGENT DESIGN OF ACTUATOR AND SENSOR FOR EMERGENCY SUPPORT SYSTEMS;144
11.4.1;1. INTRODUCTION;144
11.4.2;2. OVERVIEW OF THE BLEACH PLANT;144
11.4.3;3. DESIGN OF SENSORS FOR FAULT DIAGNOSIS;145
11.4.4;4. DESIGN OF ACTUATORS AND SENSORS FOR EMERGENCY HANDLING;146
11.4.5;5. CASE STUDY IN BLEACH PLANT;148
11.4.6;6. CONCLUSIONS;149
11.4.7;7. REFERENCES;149
11.5;CHAPTER 22. METHODOLOGY TO QUANTIFY INVERSE RESPONSE OF NONLINEAR SYSTEMS;150
11.5.1;1. INTRODUCTION;150
11.5.2;2. STABILITY ANALYSIS OF THE ZERO DYNAMICS;151
11.5.3;3. DETERMINATION OF ALL STEADY STATES OF THE SISO NONLINEAR SYSTEM;152
11.5.4;4. QUANTIFICATION OF THE EFFECT OF INVERSE RESPONSE IN THE NONLINEAR SYSTEM;152
11.5.5;5. PROPOSED METHODOLOGY TO QUANTIFY INVERSE RESPONSE IN NONLINEAR SYSTEMS;152
11.5.6;6. ILLUSTRATION OF THE PROPOSED METHODOLOGY;153
11.5.7;7. CONCLUSION;155
11.5.8;8. REFERENCES;155
11.6;CHAPTER 23. ECONOMIC IMPACT OF DISTURBANCES IN CHEMICAL PROCESSES - A DYNAMIC ANALYSIS;156
11.6.1;1. INTRODUCTION;156
11.6.2;2. DYNAMIC OPTIMISATION PROBLEM;157
11.6.3;3. THE BACK-OFF PROBLEM IN OPTIMISING CONTROL;157
11.6.4;4. ILLUSTRATIVE EXAMPLE;159
11.6.5;5. CONCLUSIONS;160
11.6.6;6. REFERENCES;160
11.7;CHAPTER 24. SYSTEMATIC PROCESS MODELLING:A TOOL FOR INTEGRATING PROCESS DESIGN AND CONTROL;162
11.7.1;1. INTRODUCTION;162
11.7.2;2. BOND GRAPHS FOR SYSTEM MODELLING;163
11.7.3;3 0. CONTROLLABILITY AND OPERABILITY;164
11.7.4;4. EXAMPLE;165
11.7.5;5 CONCLUSIONS;167
11.7.6;6. REFERENCES;167
11.8;CHAPTER 25. A COMPUTATIONAL FRAMEWORK FOR DYNAMIC OPERABILITY ASSESSMENT;168
11.8.1;Introduction;168
11.8.2;Formulation;168
11.8.3;Example Problems;170
11.8.4;Conclusion;172
11.8.5;References;172
11.9;CHAPTER 26. CONTROLLABILITY OF SIDESTREAM DISTILLATION COLUMNS;174
11.9.1;1. INTRODUCTION;174
11.9.2;2. SUPPORTING SYSTEM'S ARCHITECTURE;175
11.9.3;3.PLANTDESCIPTION;175
11.9.4;4. CONTROLLABILITY ANALYSIS;176
11.9.5;5. PID CONTROL VERSUS IMC CONTROL;178
11.9.6;6. PROJECT;179
11.9.7;7. REFERENCES;180
11.10;CHAPTER 27. DESIGN AND CONTROL SELECTIONS OF CASCADE LOOPS IN DISTILLATION;182
11.10.1;1. INTRODUCTION;182
11.10.2;2. PARAMETERS FOR THE SELECTION OF THE CONTROL SCHEME;183
11.10.3;3. CASE STUDIES;184
11.10.4;4. DYNAMIC BEHAVIOUR;185
11.10.5;5. CONCLUSIONS;186
11.10.6;6. REFERENCES;187
11.11;CHAPTER 28. INTEGRATED INFORMATION MODEL FOR PROCESS CONTROL AND MANAGEMENT;188
11.11.1;1. INTRODUCTION;188
11.11.2;2. GENERAL FRAMEWORK;189
11.11.3;3. PROCESS DESCRIPTIONS;190
11.11.4;4. CONTROL STRATEGY SPECIFICATIONS;190
11.11.5;5. DESIGN AUTOMATION AND COMPUTER TOOLS;192
11.11.6;6. CONCLUSIONS;192
11.11.7;PREFERENCES;192
11.12;CHAPTER 29. MODELING OF CONTROL STRUCTURES FOR PARTIALLY CONTROLLED PLANTS;194
11.12.1;1. INTRODUCTION;194
11.12.2;2. CONTROL STRUCTURE BASED MODELING;195
11.12.3;3. CONTROL STRUCTURE TRANSFORMATIONS;196
11.12.4;4. ILLUSTRATION OF CONTROL STRUCTURE TRANSFORMATIONS IN DISTILLATION;198
11.12.5;5. CONCLUSION;199
11.12.6;6. REFERENCES;199
11.13;CHAPTER 30. CONCEPTUAL ASSOCIATION OF PROCESS DESIGN AND PROCESS CONTROL;200
11.13.1;INTRODUCTION;200
11.13.2;CONCEPT ANALYSIS APPROACH;201
11.13.3;EXAMPLE;202
11.13.4;DISCUSSION;204
11.13.5;REFERENCES;204
11.14;CHAPTER 31. INTERACTIVE PROCESS DESIGN, OPERATION AND CONTROL THROUGH MULTIPURPOSE DYNAMIC SIMULATORS;206
11.14.1;1. INTRODUCTION;206
11.14.2;2. STRUCTURE OF A MULTIPURPOSE DYNAMIC SIMULATOR;206
11.14.3;3. FUNCTIONAL REQUIREMENTS OF A DYNAMIC SIMULATION MODULE;207
11.14.4;4. CONTROL SYSTEM SYNTHESIS AND DESIGN (CSSD);207
11.14.5;5. CONCLUSION;210
11.14.6;6. REFERENCES;210
11.14.7;ACKNOWLEDGEMENT;210
11.15;CHAPTER 32. ROLE OF COMBINED STEADY-STATE AND DYNAMIC SIMULATION IN INTEGRATION OF PROCESS AND CONTROL DESIGN;212
11.15.1;MOTIV.TI.. FOR INTEGRATION;212
11.15.2;PROVIDING AN INTEGRATED TOOL;212
11.15.3;HOW THE TOOL WILL BE USED;213
11.15.4;GENERATING THE DYNAMIC MODEL;213
11.15.5;THE CONTROL SIMULATOR;214
11.15.6;EXAMPLE APPLICATION;214
11.15.7;BUILD FLOWSHEET GRAPHICALLY;215
11.15.8;IDENTIFY COMPONENTS AND PROPERTY MODELS;215
11.15.9;SPECIFY FEED STREAM;215
11.15.10;SPECIFY COLUMN INFORMATION;215
11.15.11;PURITY SPECIFICATIONS;215
11.15.12;SENSITIVITY STUDIES;216
11.15.13;TRAY COLUMN SIZING;216
11.15.14;TOGGLE TO DYNAMIC MODE;216
11.15.15;SPECIFY ADDITIONAL EQUIPMENT PARAMETERS;216
11.15.16;OPEN LOOP SIMULATION;216
11.15.17;CONTROL CONFIGURATION;216
11.15.18;CLOSED LOOP SIMULATION;216
11.15.19;ALTERNATIVE CONTROL CONFIGURATION;217
11.15.20;REFERENCES;217
12;PART VII: CASE STUDIES;218
12.1;CHAPTER 33. THE EFFECTS OF OPERATIONAL AND DESIGN CHARACTERISTICS OF CATALYTIC CRACKING REACTORS ON THE CLOSED-LOOP PERFORMANCE OF LINEAR MODEL PREDICTIVE CONTROLLERS;218
12.1.1;1 INTRODUCTION;218
12.1.2;2 THE FCCU AND ITS DYNAMICS;218
12.1.3;3 OPERATING CHARACTERISTICS;219
12.1.4;4 DESIGN CHARACTERISTICS : PROPAGATION OF A FEED DISTURBANCE;222
12.1.5;5 CONCLUSIONS;223
12.1.6;REFERENCES;223
12.2;CHAPTER 34. IMPROVING DYNAMIC PERFORMANCE OF MODEL IV FCCUs;224
12.2.1;1 INTRODUCTION;224
12.2.2;2 PRELIMINARIES;224
12.2.3;3 STANDARD MODEL IV FCCU;225
12.2.4;4 OPERATIONAL MODIFICATION;226
12.2.5;5 COMPARING MODELS A & B;227
12.2.6;6 DESIGN MODIFICATION;228
12.2.7;7 INPUT SATURATION;228
12.2.8;8 DISCUSSION;229
12.2.9;9 ACKNOWLEDGMENTS;229
12.2.10;10 NOMENCLATURE;229
12.2.11;A NOMINAL OPERATING POINTS;229
12.2.12;B REFERENCES;229
12.3;Chapter 35. Design issues related to the control of continuous crystallizers.;230
12.3.1;1. INTRODUCTION;230
12.3.2;2. PROCESS DESCRIPTION;231
12.3.3;3. PROCESS DYNAMICS;232
12.3.4;4. UNCLASSIFIED PRODUCT REMOVAL;233
12.3.5;5. CLASSIFIED PRODUCT REMOVAL;234
12.3.6;6. CONCLUSIONS;235
12.3.7;7. REFERENCES;235
13;PART VIII: EFFECT ON UNCERTAINTY AND CHANGING OPERATING
CONDITIONS ON DESIGN/CONTROL INTERACTION;236
13.1;CHAPTER 36. SCREENING PLANT DESIGNS AND CONTROL STRUCTURES FOR UNCERTAIN SYSTEMS;236
13.1.1;1. INTRODUCTION;236
13.1.2;2. BACKGROUND;236
13.1.3;3. DESIGN CRITERIA;237
13.1.4;4. SCREENING TOOLS;237
13.1.5;5. EXAMPLE;239
13.1.6;6. BRANCH-AND-BOUND;240
13.1.7;7. CONCLUSIONS;240
13.1.8;REFERENCES;241
13.2;CHAPTER 37. REVIEW AND APPLICATION OF QUANTITATIVE TOOLS FOR INDUSTRIAL CONTROL SYSTEM DESIGN;242
13.2.1;1. INTRODUCTION;242
13.2.2;2. CONTROL STRATEGY DESIGN;243
13.2.3;3. CONTROLLER TUNING;244
13.2.4;4. AREAS FOR FUTURE RESEARCH;245
13.2.5;5. EXAMPLE;246
13.2.6;6. CONCLUSIONS;246
13.2.7;LITERATURE CITED;246
13.3;CHAPTER 38. PROCESS DESIGN AND ADAPTIVE ROBUST CONTROL FOR PARTIALLY KNOWN SYSTEMS;248
13.3.1;1. INTRODUCTION;248
13.3.2;2. THE CONTROL PROBLEM;248
13.3.3;3. PARTIALLY-KNOWN SYSTEMS;249
13.3.4;4. UNCERTAINTY DESCRIPTIONS;249
13.3.5;5. ADAPTATION;251
13.3.6;6. EXAMPLE;252
13.3.7;7. CONCLUSIONS;252
13.3.8;8. REFERENCES;252
13.4;CHAPTER 39. SWITCHABILITY ANALYSIS;254
13.4.1;1. INTRODUCTION;254
13.4.2;2. SWITCHABILITY ANALYSIS;254
13.4.3;3. AIR PLANT CASE STUDY;255
13.4.4;4. BINARY COLUMN DESIGN;257
13.4.5;5. CONCLUSIONS;258
13.4.6;6. REFERENCES;259
14;AUTHOR INDEX;260