Yuille / Zhu / Cremers | Energy Minimization Methods in Computer Vision and Pattern Recognition | E-Book | www2.sack.de
E-Book

Yuille / Zhu / Cremers Energy Minimization Methods in Computer Vision and Pattern Recognition

6th International Conference, EMMCVPR 2007, Ezhou, China, August 27-29, 2007, Proceedings
2007
ISBN: 978-3-540-74198-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

6th International Conference, EMMCVPR 2007, Ezhou, China, August 27-29, 2007, Proceedings

E-Book, Englisch, 500 Seiten, eBook

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

ISBN: 978-3-540-74198-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed proceedings of the 6th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition held in Ezhou, China, in August 2007. Twenty-two full papers are presented along with fifteen poster papers. The papers are organized into topical sections on algorithms, applications, image parsing, image processing, motion, shape, and three-dimensional processing.

Yuille / Zhu / Cremers Energy Minimization Methods in Computer Vision and Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Algorithms.- An Effective Multi-level Algorithm Based on Simulated Annealing for Bisecting Graph.- Szemerédi’s Regularity Lemma and Its Applications to Pairwise Clustering and Segmentation.- Exact Solution of Permuted Submodular MinSum Problems.- Efficient Shape Matching Via Graph Cuts.- Simulating Classic Mosaics with Graph Cuts.- An Energy Minimisation Approach to Attributed Graph Regularisation.- Applications to Faces and Text.- A Pupil Localization Algorithm Based on Adaptive Gabor Filtering and Negative Radial Symmetry.- Decomposing Document Images by Heuristic Search.- CIDER: Corrected Inverse-Denoising Filter for Image Restoration.- Skew Detection Algorithm for Form Document Based on Elongate Feature.- Active Appearance Models Fitting with Occlusion.- Combining Left and Right Irises for Personal Authentication.- Image Parsing.- Bottom-Up Recognition and Parsing of the Human Body.- to a Large-Scale General Purpose Ground Truth Database: Methodology, Annotation Tool and Benchmarks.- An Automatic Portrait System Based on And-Or Graph Representation.- Object Category Recognition Using Generative Template Boosting.- Bayesian Inference for Layer Representation with Mixed Markov Random Field.- Image Processing.- Dichromatic Reflection Separation from a Single Image.- Noise Removal and Restoration Using Voting-Based Analysis and Image Segmentation Based on Statistical Models.- A Boosting Discriminative Model for Moving Cast Shadow Detection.- Motion Analysis.- An a Contrario Approach for Parameters Estimation of a Motion-Blurred Image.- Improved Object Tracking Using an Adaptive Colour Model.- Vehicle Tracking Based on Image Alignment in Aerial Videos.- Probabilistic Fiber Tracking Using Particle Filtering and Von Mises-Fisher Sampling.- Compositional Object Recognition, Segmentation, and Tracking in Video.- Bayesian Order-Adaptive Clustering for Video Segmentation.- Dynamic Feature Cascade for Multiple Object Tracking with Trackability Analysis.- Shape Analysis.- Discrete Skeleton Evolution.- Shape Classification Based on Skeleton Path Similarity.- Removing Shape-Preserving Transformations in Square-Root Elastic (SRE) Framework for Shape Analysis of Curves.- Shape Analysis of Open Curves in ?3 with Applications to Study of Fiber Tracts in DT-MRI Data.- Three-Dimensional Processing.- Energy-Based Reconstruction of 3D Curves for Quality Control.- 3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes.- Continuous Global Optimization in Multiview 3D Reconstruction.- A New Bayesian Method for Range Image Segmentation.- Marked Point Process for Vascular Tree Extraction on Angiogram.- Surface Reconstruction from LiDAR Data with Extended Snake Theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.