Buch, Englisch, 687 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1042 g
Nonlinear Programming
Buch, Englisch, 687 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1042 g
Reihe: Springer Optimization and Its Applications
ISBN: 978-1-4419-3765-0
Verlag: Springer US
This book, a result of the authors’ teaching and research experience in various universities and institutes over the past ten years, can be used as a textbook for an optimization course for graduates and senior undergraduates. It systematically describes optimization theory and several powerful methods, including recent results. For most methods, the authors discuss an idea’s motivation, study the derivation, establish the global and local convergence, describe algorithmic steps, and discuss the numerical performance. The book deals with both theory and algorithms of optimization concurrently. It also contains an extensive bibliography. Finally, apart from its use for teaching, Optimization Theory and Methods will be very useful as a research reference.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik Mathematik Geometrie
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
Weitere Infos & Material
Line Search.- Newton’s Methods.- Conjugate Gradient Method.- Quasi-Newton Methods.- Trust-Region Methods and Conic Model Methods.- Solving Nonlinear Least-Squares Problems.- Theory of Constrained Optimization.- Quadratic Programming.- Penalty Function Methods.- Feasible Direction Methods.- Sequential Quadratic Programming.- Trust-Region Methods for Constrained Problems.- Nonsmooth Optimization.