Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1210 g
Computational Intelligence with Support Vector Machines
Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1210 g
ISBN: 978-3-540-77802-8
Verlag: Springer Berlin Heidelberg
Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Finanzsektor & Finanzdienstleistungen: Allgemeines
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensfinanzen Finanzierung, Investition, Leasing
- Mathematik | Informatik EDV | Informatik Informatik
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Unternehmensfinanzierung
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
Weitere Infos & Material
Credit Risk Analysis with Computational Intelligence: An Analytical Survey.- Credit Risk Analysis with Computational Intelligence: A Review.- Unitary SVM Models with Optimal Parameter Selection for Credit Risk Evaluation.- Credit Risk Assessment Using a Nearest-Point-Algorithm-based SVM with Design of Experiment for Parameter Selection.- Credit Risk Evaluation Using SVM with Direct Search for Parameter Selection.- Hybridizing SVM and Other Computational Intelligent Techniques for Credit Risk Analysis.- Hybridizing Rough Sets and SVM for Credit Risk Evaluation.- A Least Squares Fuzzy SVM Approach to Credit Risk Assessment.- Evaluating Credit Risk with a Bilateral-Weighted Fuzzy SVM Model.- Evolving Least Squares SVM for Credit Risk Analysis.- SVM Ensemble Learning for Credit Risk Analysis.- Credit Risk Evaluation Using a Multistage SVM Ensemble Learning Approach.- Credit Risk Analysis with a SVM-based Metamodeling Ensemble Approach.- An Evolutionary-Programming-Based Knowledge Ensemble Model for Business Credit Risk Analysis.- An Intelligent-Agent-Based Multicriteria Fuzzy Group Decision Making Model for Credit Risk Analysis.