Buch, Englisch, 214 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 554 g
Methods and Applications in Bioinformatics and Text Mining
Buch, Englisch, 214 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 554 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-642-19405-4
Verlag: Springer
The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Introduction.- Rayleigh quotient-type problems in machine learning.- Ln-norm Multiple Kernel Learning and Least Squares Support VectorMachines.- Optimized data fusion for kernel k-means Clustering.- Multi-view text mining for disease gene prioritization and clustering.- Optimized data fusion for k-means Laplacian Clustering.- Weighted Multiple Kernel Canonical Correlation.- Cross-species candidate gene prioritization with MerKator.- Conclusion.