E-Book, Englisch, 78 Seiten, eBook
Reihe: SpringerBriefs in Electrical and Computer Engineering
Yu / He Deep Reinforcement Learning for Wireless Networks
1. Auflage 2019
ISBN: 978-3-030-10546-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 78 Seiten, eBook
Reihe: SpringerBriefs in Electrical and Computer Engineering
ISBN: 978-3-030-10546-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
1.1;A Brief Journey Through ``Deep Reinforcement Learning for Wireless Networks'';6
2;Contents;8
3;1 Introduction to Machine Learning;10
3.1;1.1 Supervised Learning;10
3.1.1;1.1.1 k-Nearest Neighbor (k-NN);11
3.1.2;1.1.2 Decision Tree (DT);11
3.1.3;1.1.3 Random Forest;12
3.1.4;1.1.4 Neural Network (NN);14
3.1.4.1;Random NN;14
3.1.4.2;Deep NN;15
3.1.4.3;Convolutional NN;15
3.1.4.4;Recurrent NN;15
3.1.5;1.1.5 Support Vector Machine (SVM);16
3.1.6;1.1.6 Bayes' Theory;16
3.1.7;1.1.7 Hidden Markov Models (HMM);18
3.2;1.2 Unsupervised Learning;18
3.2.1;1.2.1 k-Means;18
3.2.2;1.2.2 Self-Organizing Map (SOM);19
3.3;1.3 Semi-supervised Learning;20
3.4;References;20
4;2 Reinforcement Learning and Deep Reinforcement Learning;23
4.1;2.1 Reinforcement Learning;23
4.2;2.2 Deep Q-Learning;24
4.3;2.3 Beyond Deep Q-Learning;25
4.3.1;2.3.1 Double DQN;25
4.3.2;2.3.2 Dueling DQN;26
4.4;References;26
5;3 Deep Reinforcement Learning for Interference Alignment Wireless Networks;28
5.1;3.1 Introduction;28
5.2;3.2 System Model;30
5.2.1;3.2.1 Interference Alignment;30
5.2.2;3.2.2 Cache-Equipped Transmitters;31
5.3;3.3 Problem Formulation;32
5.3.1;3.3.1 Time-Varying IA-Based Channels;32
5.3.2;3.3.2 Formulation of the Network's Optimization Problem;33
5.3.2.1;System State;34
5.3.2.2;System Action;35
5.3.2.3;Reward Function;35
5.4;3.4 Simulation Results and Discussions;38
5.4.1;3.4.1 TensorFlow;39
5.4.2;3.4.2 Simulation Settings;40
5.4.3;3.4.3 Simulation Results and Discussions;42
5.5;3.5 Conclusions and Future Work;49
5.6;References;50
6;4 Deep Reinforcement Learning for Mobile Social Networks;52
6.1;4.1 Introduction;52
6.1.1;4.1.1 Related Works;54
6.1.2;4.1.2 Contributions;55
6.2;4.2 System Model;56
6.2.1;4.2.1 System Description;56
6.2.2;4.2.2 Network Model;57
6.2.3;4.2.3 Communication Model;58
6.2.4;4.2.4 Cache Model;59
6.2.5;4.2.5 Computing Model;60
6.3;4.3 Social Trust Scheme with Uncertain Reasoning;61
6.3.1;4.3.1 Trust Evaluation from Direct Observations;62
6.3.2;4.3.2 Trust Evaluation from Indirect Observations;63
6.3.2.1;Belief Function;64
6.3.2.2;Dempster's Rule of Combining Belief Functions;65
6.4;4.4 Problem Formulation;66
6.4.1;4.4.1 System State;66
6.4.2;4.4.2 System Action;67
6.4.3;4.4.3 Reward Function;68
6.5;4.5 Simulation Results and Discussions;69
6.5.1;4.5.1 Simulation Settings;70
6.5.2;4.5.2 Simulation Results;71
6.6;4.6 Conclusions and Future Work;75
6.7;References;76




